

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 1 of 64

Getting Started with the Audio Precision

APx LabVIEW .NET Driver
version 4.5, September 2017

Introduction

The APx LabVIEW .NET Driver is a collection of Virtual Instruments (VIs) that provides the

ability to access most of the functionality available in the APx500 Application Programming

Interface (API) using high level, LabVIEW-typical subVIs, with a minimum number of

programming steps. Using the driver collection, you can quickly and efficiently develop APx

applications with clean, concise LabVIEW code.

Contents

Introduction ... 1

How to Use This Document .. 2

Background ... 2

LabVIEW Version Requirements ... 3

Driver Version Information .. 3

What’s New in Version 4.5? ... 3

Upgrading Existing LabVIEW Projects and VIs .. 3

Features ... 7

Limitations .. 7

Installation... 7

Running LabVIEW in Administrator Mode ... 8

Organization of the Driver .. 8

Use a LabVIEW Project and Corresponding .config File ... 11

The APx500 Open VI ... 13

Getting Started–A First Simple APx LabVIEW VI .. 14

Using the APx500 Close VI .. 15

Running a Measurement in the APx Project ... 16

Error Handling .. 21

The Signal Path & Measurement Cluster .. 22

Changing APx Measurement Settings with the Driver VIs .. 24

How the Driver VIs Handle Units in Configuration Settings ... 28

Changing Measurement Settings–A Simple Example .. 28

Changing Measurement Settings–A Better Example .. 29

Generating Arbitrary Waveforms with the LabVIEW Driver VIs .. 35

Measuring .wav Files with the LabVIEW Driver VIs .. 36

Recap–Configuring Measurement Settings .. 36

About the Orange Colored Controls ... 37

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 2 of 64

Working with Cluster Control Subsets ... 38

Accessing Primary Measurement Results with the LabVIEW Driver .. 41

Handling Dynamic Measurement Results ... 45

Returning All Data Points ... 45

How the Driver VIs Handle Measurement Data Units ... 47

Running an APx Measurement Sequence ... 47

The User Interface Example ... 50

Configuring the Signal Path Setup .. 51

Reference Levels ... 55

Acquiring Raw Data from the Signal Analyzer Measurement ... 57

Controlling Input and Output Switchers ... 58

Using the WaveReader DLL ... 59

Directly Accessing .NET Methods and Properties ... 61

Conclusion .. 64

How to Use This Document

This document is a guide to getting started with the APx LabVIEW .NET Driver. In addition to

providing background information and an overview of the driver, it contains a tutorial that will

guide you through the process of creating a series of LabVIEW programs to control and interact

with an APx500 Series audio analyzer. The tutorial begins with the simplest possible APx

LabVIEW program and gradually increases in complexity, introducing and explaining features of

the driver along the way.

The tutorial section assumes that you have a basic level of proficiency in LabVIEW. If you are

new to LabVIEW, you should work through the Getting Started with LabVIEW manual that

matches the version of LabVIEW that you are using. This document also assumes that you have

a basic level of proficiency in using the APx500 measurement software.

Note that due to continual product improvement, figures in this document taken from earlier

versions of the software and driver may not exactly match the version that you are using.

Background

The APx500 Series of audio analyzers are controlled via the APx500 measurement software. The

APx500 software has many test automation features built in, including customizable user

prompts and the ability to call external applications. For those who want to go beyond the

automation features built into the APx500 measurement software, a full-featured Application

Programming Interface (API) is available. The API is built on the Microsoft .NET platform,

allowing custom APx programs to be developed in any .NET capable language.

National Instruments’ LabVIEW is a graphical programming language that uses block diagrams

instead of text-based code to create applications. LabVIEW is a popular development platform in

test automation circles because it has an extensive library of instrument drivers and a broad test

development feature set. Because LabVIEW supports .NET connectivity, it is one of the many

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 3 of 64

programming languages that can be used to develop custom APx500 applications using the APx

.NET-based API. For more information on LabVIEW, visit http://www.ni.com/labview.

Audio Precision provides code examples on our website that demonstrate how to use VB.NET

and C#, to interact with the APx API. Examples using LabVIEW are installed with the APx

LabVIEW .NET Driver and are available from the Examples sub-palette.

Every feature available in the APx API can be accessed from LabVIEW, using basic low level

calls to the .NET properties and methods available in the API. However, due to the graphical

nature of LabVIEW and the way in which it interfaces with .NET objects, APx LabVIEW

programs developed using only these low level .NET calls would be considered “awkward” by

many programmers accustomed to using LabVIEW.

The APx LabVIEW .NET Driver is a collection of Virtual Instruments (VIs) intended to

eliminate this awkwardness, and to enhance the development of APx programs using LabVIEW.

It provides LabVIEW users the ability to access most of the functionality available in the API

using higher level LabVIEW-typical subVIs, with fewer program steps. As a result, APx

LabVIEW applications can be developed much more quickly and efficiently, with cleaner, more

concise LabVIEW code.

LabVIEW Version Requirements

The APx LabVIEW .NET Driver was developed in LabVIEW version 2012 for users having

LabVIEW 2012 or later.

Driver Version Information

The APx LabVIEW .NET Driver is version-specific to the APx500 measurement software. For

example, the APx LabVIEW .NET Driver 4.5 must be used with APx500 4.5. The revision

number of the driver (4.5.x) is independent of APx500 and indicates a driver update.

What’s New in Version 4.5?

Features added to the APx LabVIEW .NET Driver in version 4.5 include:

• Updated Bluetooth Configuration and Action/Status VIs to support the new Bluetooth Duo

module.

• Added new VIs to configure the DUT Delay measurement settings in Sequence mode.

• Miscellaneous improvements and fixes.

Upgrading Existing LabVIEW Projects and VIs

Changes from 4.4. to 4.5

• The Bluetooth Configuration Parameters typedef cluster control used in the VIs that get and

set Bluetooth configuration settings has been extensively modified to support the new

Bluetooth features added in APx 4.5.

http://www.ni.com/labview

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 4 of 64

Changes from 4.3 to 4.4:

• The following VIs are no longer polymorphic and the same VI will now work for either

Sequence and Bench mode. If you are using the Sequence or Bench-specific versions, which

have been removed, LabVIEW will prompt for a replacement. For example, when LabVIEW

cannot find APx500 Sequence – Auto Set Generator Level or APx500 Bench – Auto Set

Generator Level when loading a project, browse and select APx500 – Auto Set Generator

Level to have LabVIEW automatically fix the error.

 APx500 Auto Set Generator Level

 APx500 Utility-Get IO Connector Details

 APx500 Utility-Get Output Connector Details

 APx500 Utility-Get Input Connector Details

 APx500 Config-SigPath GetSet Output Connector Type

 APx500 Config-SigPath GetSet Input Connector Type

 APx500 Config-SigPath GetSet Filters Analog

 APx500 Config-SigPath GetSet Filters Digital

Changes from 4.2 to 4.3:

• The settings control Type Defs for the Measurement Recorder, Signal Acquisition, and

Signal Analyzer measurements have changed slightly due to the addition of the Loop

Waveform checkbox. If you are using a control or constant that is not linked to the

corresponding Type Def, you will need to update it manually.

• Some VIs had input and output terminals with the same name. These terminal names are now

appended with “in” and “out”. When using these VIs in TestStand, it may be necessary to

refresh each step to update the names.

Changes from 4.1 to 4.2:

1. New install location:

The APx LabVIEW Driver is now installed at instr.lib\Audio Precision APx .NET

instead of at instr.lib\Audio Precision\APx Driver. In order to resolve conflicts

due to the new location, you will need to do the following when opening a VI saved for

an earlier version of the APx .NET Driver:

a. LabVIEW will search and find the driver VIs in the new locations and display a

prompt for you to accept each one. Accept the changes until the VI finishes

opening.

b. Save the project and all VIs, and then go to Project > Resolve Conflicts to resolve

any remaining location conflicts.

c. To ensure that no conflicts are remaining in memory, save the project and all its

files again, and then close and reopen LabVIEW.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 5 of 64

d. Before reopening the project, it is a good idea to do a Mass Compile on the entire

project directory (Tools > Advanced > Mass Compile) to make sure that

references in all VIs, including those that don’t currently have callers, are

properly updated.

2. Result types are now static objects (the MeasurementResultType enum is no longer used).

The .NET invoke nodes APx500.AddResult and APx500.DeleteResult will be broken and

will show in the VI error list. To resolve the errors, do the following:

Figure 1. The AddResult invoke node from a previous project is broken in 4.2.

a. Right click on the node and choose “Select Method”. Then reselect the desired

method (AddResult or DeleteResult). This will fix the node but break the wire

from the enum.

Figure 2. Reselecting the method fixes the invoke node but then breaks the wire from the

MeasurementResultType enum.

b. Note the enum value (in this case “LevelVsFrequency”). Delete the enum and the

broken wire.

c. Right-click on the terminal of resultType, select “Create property for …”, and

then select the static object of the desired result type. In this case, it will be “(S)

LevelVsFrequency”. Then wire it to resultType. Note that because this is a static

property, it can be used without creating a class object. Therefore, the incoming

and outgoing object reference terminals will remain disconnected. This will not

cause a LabVIEW error.

Figure 3. A MeasurementResultType static object is created to replace the enum.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 6 of 64

d. Rerun the error cluster wire to include the new static object.

Figure 4. The error cluster is reconnected to include the static object.

Changes from 3.4 to 4.1:

If your project was saved using APx Driver 3.4.3 or earlier, you will need to note the following

changes as well as those described in the preceding section.

• Controls and indicators have been reorganized into more logical front panel clusters.

• The Level result has been renamed RMS Level.

• Reference Levels is no longer a separate “measurement” but is incorporated into Signal

Path Setup.

• Input bandwidth and filter controls have changed in APx500 v4.0 and v4.1. In the driver,

these controls are no longer in the Input Configuration VIs and have been moved to

separate Analog and Digital filter VIs.

• There are some changes to the underlying APx500 API. The most significant is that

Generator.AnalogLevels and Generator.DigitalLevels is now just Generator.Levels. If

you have any custom VIs you’ve created that use these properties they will need to be

updated. For more details on API changes, refer to the APx API Browser.

• Because the driver now supports multiple channels for generator level, when writing a

single value you will need to convert it to an array. The figure below shows how to create

an array for setting the Frequency Response measurement analog generator level:

Figure 5. Writing a single value for analog generator level to the Frequency Response generator

settings VI.

• Because the driver now supports multiple channels for generator level, when reading a

single value you will need to convert it from an array. The figure below shows how to

extract the first value from an array when reading the Frequency Response measurement

analog generator level:

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 7 of 64

Figure 6. Reading a single value (channel 1) for analog generator level from the Frequency Response

generator settings VI.

• When a compiled LabVIEW application is run on a Windows 8 or 8.1 PC, it may not be

able to locate the APx API DLL. To resolve this issue, copy the APx API ({Program

Files}\Audio Precision\APx500 4.5\API\AudioPrecision.API.dll) into the same directory

as the application’s executable.

Features

The APx LabVIEW .NET Driver was designed to follow the National Instruments LabVIEW

Plug & Play Instrument Driver standard. Driver features include:

• Works with all audio analyzers in the APx500 Series.

• Supports configuration, running, and data handling of virtually all measurements in the

APx500 measurement collection.

• Measurements can either be run individually or as part of a sequence defined in a project file.

• The ability to control any non-advanced1 measurement setting.

Limitations

There are some limitations to the driver, including:

• Generally, advanced measurement configuration settings are not supported in the driver1.

• Digital Serial Input and Output configuration is not supported. However, opening preset

configuration files is.

Installation

If you have an earlier version of the APx LabVIEW .NET Driver installed, it is recommended

that you uninstall it before installing this version. The driver can be uninstalled using the Add or

Remove Programs feature in the Windows Control Panel, as shown in Figure 7.

1 Note: Access to more advanced API features that are not implemented in the driver is still available using basic

low-level .NET API calls. See page 57.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 8 of 64

Figure 7. Uninstalling the previous version.

To install the APx LabVIEW .NET Driver, download it from ap.com, unzip it, and run setup.exe.

By default, the installer will install the driver in the instr.lib sub folder of the LabVIEW

installation on the computer, as shown below. This default location should not be changed.

Otherwise, the driver’s menu palette will not be available in LabVIEW.

Figure 8. The APx LabVIEW .NET Driver installer.

Running LabVIEW in Administrator Mode

Normally it should not be necessary to run LabVIEW as an administrator when using this driver.

However, if UAC (User Account Control) is enabled in Windows, in some cases it may be

necessary to run as an administrator when calling an application that needs elevated permissions.

One such example is the WaveReader VIs (see APx500 Example – WaveReader.vi), where it is

necessary to run LabVIEW as administrator when Measurement Recorder is saving a wave file

to the user documents directory.

Organization of the Driver

After installation, the driver collection will be contained in a folder named Audio Precision\APx

Driver within the instr.lib sub-folder of the directory where LabVIEW is installed. For LabVIEW

version 2012, the folder name is C:\Program Files\National Instruments\LabVIEW

2012\instr.lib\Audio Precision APx .NET.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 9 of 64

The driver includes a special menu palette, accessible from the LabVIEW functions palette on

the block diagram, under Instrument I/O - Instrument Driver - APx500, as shown in Figure 9.

Figure 9. The APx LabVIEW .NET Driver menu palette

On the main menu palette, there is a link to a VI named APx500 VI Tree.vi. This is a special

type of VI provided with LabVIEW drivers to help document the VIs in the driver collection.

When opened, the front panel of this VI appears as shown in Figure 10. The VI Tree is not meant

to be executable, as evidenced by the broken run arrow on the toolbar below the View menu

item. The block diagram for this VI shows every high level VI in the driver (Figure 11).

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 10 of 64

Figure 10. The VI Tree front panel

Figure 11. The VI Tree block diagram

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 11 of 64

Consistent with the National Instruments guidelines for an instrument driver, the VIs in the in the

APx500 VI Tree (Figure 11) are organized into categories including Initialize, Configure,

Action/Status, Data, Examples, Close, and Bench. These same categories are visible in the

driver’s menu palette (Figure 9).

Driver VIs may be loaded from the driver’s menu palette or copied from the VI Tree.

The addition of Bench mode introduces a new icon color coding scheme as follows:

Table 1. VI icon color code

Color band on VI icon APx500 mode:

Blue

Sequence mode

Blue with Green in
corner

Polymorphic, with Sequence mode as the default. To switch to Bench
mode, right click the VI and choose “Select Type > Bench.” When
switched to Bench mode, the color will change to Green.

Half Blue, half Green

Work as-is in either Sequence or Bench mode.

Green

Bench mode

Use a LabVIEW Project and Corresponding .config File

We have found that when working with .NET assemblies such as the APx500 API, the use of a

LabVIEW project is critical.

The LabVIEW Driver installer puts a LabVIEW project named “APx500 Examples

Project.lvproj” in the driver folder. There is also a shortcut to this project placed in the Start

Menu. The Examples project contains a number of example VIs to help you get started using the

APx driver.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 12 of 64

Figure 12

A configuration file with the same name as your LabVIEW project must be included in the folder

that the LabVIEW project resides in. Using a project file and accompanying .config file like this

when working with the APx Driver VIs will prevent errors caused by cross-linking and by

LabVIEW referencing the wrong version of the APx API. If a project file and .config file are not

used, in some cases the LabVIEW driver VIs may not work.

The Examples project shown in Figure 12 contains a configuration file named “APx500

Examples Project.lvproj.config”. You can use this file in your own LabVIEW project by simply

renaming it. The config file must have the same name as your LabVIEW project, followed by

“.config”. For example, if you create a new LabVIEW project named MyAPx500Project.lvproj,

make a copy of the .config file above in the same folder as the project and rename it to

MyAPx500Project.lvproj.config.

When updating a project for a new version of APx500, be sure to change the version references

in the .config file accordingly. The example below shows the proper reference to the APx API

version 4.5:

<bindingRedirect oldVersion="2.1.0.0-4.4.0.0" newVersion="4.5.0.0" />

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 13 of 64

The APx500 Open VI

The first VI in the collection is the APx500 Open.vi (Figure 13). This VI Opens the APx500

measurement software (if it is not already open), and creates a .NET reference to the APx API.

This VI must be run before any of the other VIs in the driver collection, so that it can pass a

reference to the API to any subVIs further down the line. Aside from the Example VIs, this is the

only VI in the driver collection that can be run on its own as a Top Level VI (i.e., not as a

subVI).

Note: If the APx500 application is already open, the APx500 Open VI simply creates a .NET

reference to the API. It does not open multiple instances of the APx500 application.

The APx500 Open VI is polymorphic, allowing you to open APx500 in either Sequence or

Bench mode. The default is Sequence mode. To open in Bench mode, add the VI to your block

diagram, right click on it, and choose “Select Type > Bench.”

LabVIEW’s context help can be turned on or off by selecting Show Context Help from the Help

menu, or by pressing Ctrl-H. Figure 13 shows the wiring diagram part of the context help for the

APx500 Open.vi.

Figure 13

By default, the APx500 Open VI makes the APx500 application visible. If you prefer to use the

API with the APx500 Application invisible, you can simply wire a Boolean False to the Visible

input of the APx500 Open VI.

When the APx500 Open VI is added to a diagram, it will refer to the version of the APx

LabVIEW .NET Driver that is currently installed. When you upgrade APx500 and open an

existing project, LabVIEW will prompt you that the APx500 API version has been changed. You

can check the API version by locating the APx500 constructor in the block diagram of the APx

Open VI.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 14 of 64

Figure 14

Getting Started–A First Simple APx LabVIEW VI

To create a simple APx LabVIEW program, open a New VI, and place a copy of the APx500

Open.vi on the block diagram. Next, right-click on the Version Info output tab of the VI and

select Create – Indicator, to create a Version Info indicator. Finally, for good measure, add a

Simple Error Handler VI to the diagram and connect it to the error out indicator of the APx500

Open VI. When you are finished, your block diagram should be similar to Figure 15.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 15 of 64

Figure 15. Block diagram of a first simple VI to control an APx analyzer,

and the Version Info cluster on the front panel

This simple VI is now ready to run. Note that if the PC is not properly connected to an APx500

analyzer that is powered on, the APx500 measurement software can be run in demo mode. In

fact, if the APx application is loaded from the API (e.g., using LabVIEW) rather than from

Windows, the software is automatically loaded in demo mode when an instrument is not

connected. Demo mode simulates almost all of the functionality of the APx software, but returns

random data. Fortunately, all of the API calls function normally in demo mode, and therefore,

LabVIEW VIs to control APx analyzers can be mostly developed without an APx analyzer being

connected.

To run this simple VI, click the white Run arrow on the VI’s front panel. After several seconds

(the amount of time depends on the PC speed and available memory resources), the APx

application will load, and the Version Info will be displayed in the indicator on the front panel2.

As explained in the context help, if the APx application is running in demo mode, some of the

indicators in the Version Info cluster return blank values.

Using the APx500 Close VI

The APx500 Close.vi closes the APx500 measurement software and closes the .NET reference to

the APx API. With traditional LabVIEW instrument drivers, it is considered good practice to

close any driver references when a VI is finished its task. Figure 16 shows the block diagram of

the simple VI from Figure 15 with the Close VI added.

2 Note: An exception to this occurs the first time an APx analyzer is used with a new version of the APx500

application. In this situation, the application pauses to update the instrument’s firmware.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 16 of 64

Figure 16. APx500 Close VI added to the she simple VI.

The APx LabVIEW .NET Driver is not a traditional LabVIEW instrument driver in the sense

that running the APx500 Open VI without running the Close VI does not open an additional

instance of the APx500 measurement software. Therefore, there is no advantage to adding the

APx500 Close VI to every VI. In fact, closing the application every time a VI finishes running

can be a disadvantage, because of the time it takes to re-open the application. We do not

recommend adding the APx500 Close VI to every top level VI.

The only potential disadvantage to the above strategy is if the APx500 application is running

with its UI invisible when you are finished using it with LabVIEW. In this case, if the APx500

Close VI is not used somewhere in the LabVIEW program, the APx500 application will remain

in memory without the user knowing it, because the UI window is invisible. If you are concerned

about this you should add the APx500 Close VI to your APx VIs. However, in our opinion, the

inconvenience of having to re-open the APx500 application every time a VI is run far outweighs

the disadvantage of the application occasionally being left running and invisible.

Running a Measurement in the APx Project

Next, we will look at running an APx measurement from LabVIEW. Begin by saving the simple

VI created above. In the examples shown below, the VI has been saved with the name My APx

Program.vi. Follow the steps below to create a simple LabVIEW program to run a Level and

Gain measurement on the APx analyzer.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 17 of 64

1. Delete all sub-VIs from

the block diagram,

except the APx500 Open

VI and the Simple Error

Handler

2. Add the APx500 Utility –

Strings to Signal Path &

Measurement VI and the

APx500 Perform

Measurement VI to the

diagram and connect

them as shown.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 18 of 64

3. Right-click on the

appropriate inputs to the

Utility – Strings to

Signal Path &

Measurement VI, and

create controls for the

Signal Path and

Measurement name

strings.

4. Right-click on the

Measurement Complete

output of the Perform

Measurement VI and

create an indicator.

5. Enter the names “Signal

Path1” and “Level and

Gain” in the appropriate

string controls on the

front panel of the VI, as

shown.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 19 of 64

6. Open the APx500

application (if it is not

already open). If it is

open, start a new Project

with the Default

template. This will

ensure that a Signal Path

named “Signal Path1”

exists in the Project and

that a measurement

named “Level and Gain”

exists within that Signal

Path. It will also ensure

that the Report checkbox

is checked.

7. Run the VI by clicking

the Run arrow. This will

cause the APx500

application to complete a

Level and Gain

measurement and create

a report. Once complete,

the RMS Level result of

the Level and Gain

measurement will be

highlighted in the APx

Application. On the front

panel of the VI, the

Measurement Complete

LED should now be

green instead of grey.

The above simple program illustrates running an APx measurement from LabVIEW. The

Perform Measurement VI uses the APx Sequencer to run the measurement. This is equivalent to

checking the measurement’s checkbox in the APx Navigator, and then right-clicking on the

measurement and selecting Run Measurement (Figure 17). Running the measurement via the

Sequencer is preferred over simply turning on the generator and reading the instantaneous data,

because the Sequencer method returns settled readings.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 20 of 64

Figure 17

Note that specifying the Signal Path and measurement name is a critical step. This tells the APx

API precisely which measurement in APx that our LabVIEW program wants to interact with. It

is critical that these two items are specified correctly, and that they exist in the project.

Otherwise, the API will generate an error. To see this in action, change the string in the Signal

Path control on the LabVIEW front panel from “Signal Path1” to “Signal Path2”, and run the VI

again. This time it will generate the error message shown in Figure 18.

Figure 18

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 21 of 64

The same error message is generated if the measurement name specified in the Measurement

string control does not match a measurement in the specified Signal Path. Therefore, you must

ensure that the specified Signal Path name exists within the APx project, and that the specified

measurement name exists within that Signal Path.

Error Handling

All of the error handling in the APx LabVIEW .NET Driver takes place in the APx API. The

LabVIEW VIs in the driver collection merely pass the LabVIEW error cluster down the line.

Every VI in the driver collection has an error in control and an error out indicator. To follow

recommended programming best practice, you should wire the error in and error out terminals of

all driver VIs, and add an error handler VI to your top level VI.

Unfortunately, LabVIEW does not do a very good job of handling .NET exceptions. As

described in the LabVIEW Help system and on the NI Support site, any exception thrown when

calling a .NET object or property is converted into LabVIEW Error 1172. LabVIEW does add

more error information to the error message, but if you use LabVIEW’s built-in Simple Error

Handler VI, the error messages returned are rather cryptic and difficult to understand (see, for

example, the error message in Figure 18). To overcome this problem, an interface called

APx.LastException is part of the APx500 API. This function keeps track of the last .NET

exception thrown by the APx500 application, giving LabVIEW access to the same managed

error handling features available in .NET.

The VI named APx500 Utility-APx Simple Error Handler uses the APx.LastException interface

to trap LabVIEW’s generic 1172 errors and to return instead error messages that are much more

meaningful and easy to read. The function of this VI is described in Figure 19. To compare error

messages returned by this VI to those returned by LabVIEW, compare Figure 18 to Figure 20.

Figure 19

http://digital.ni.com/public.nsf/allkb/B15CE9F2715434C386256D3500601878

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 22 of 64

Figure 20

The Signal Path & Measurement Cluster

Due to the importance of specifying Signal Paths and measurement names correctly, the APx

LabVIEW .NET Driver uses a special control named Signal Path & Measurement. In Figure 21,

you can see that this control is passed into and out of the Perform Measurement VI. If you

browse through the VIs in the driver collection, you will notice that Signal Path & Measurement

is an input or output for many of the VIs that make up the driver.

Figure 21

To take a closer look at this special control, add a Signal Path & Measurement indicator to the

My APx Program.vi after the Strings to Signal Path & Measurement VI as shown in Figure 22

(right-click on the wire and select Create – Indicator). Next, change the Signal Path string back

to “Signal Path1” and run the VI. The resulting front panel is shown in Figure 12 (controls have

been rearranged for better visibility).

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 23 of 64

Figure 22

Figure 23. An indicator for the Signal Path & Measurement cluster added to the VI.

As shown in Figure 23, the Signal Path & Measurement indicator now contains an array of

measurements. If you change the Measurements array index, you will see that each element in

the array corresponds to a measurement in Signal Path1 of the currently active APx project. The

array also contains a check box denoting whether the measurement is checked, and a

Measurement Type (enumerated type) indicator.

One important feature of the Signal Path & Measurement cluster is not immediately obvious:

The Selected Measurement Index control (shown below the Path Name) in the cluster, is the

control used to specify the measurement within the Signal Path. This index is zero-based. In the

example shown in Figure 23, the Selected Measurement Index is equal to 3. Note that this

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 24 of 64

corresponds to the position of the measurement in the Signal Path, with index 0 being the first

measurement (Signal Path Setup), index 1 = Signal Path Diagnostics, index 2 = Reference

Levels, and index 3 = Level & Gain.

There are many utility VIs in the driver collection for working with Signal Paths and

measurements. For example, the Get Signal Paths VI (Figure 24) returns an array of Signal Path

& Measurement clusters with one element for every Signal Path in the currently loaded APx

project. This structure provides a way of addressing every measurement in a project. This utility

will be useful when you create more advanced VIs as will be seen later in the tutorial.

Figure 24

Changing APx Measurement Settings with the Driver VIs

The simple My APx Program VI above performs a measurement with the settings as configured

in the APx project. But most users will want to configure the measurement from LabVIEW – for

example, you may want to vary the generator level or frequency. So next we will look at using

the driver VIs to change the measurement configuration.

In the My APx Program VI, delete the Signal Path & Measurement indicator. Next, add the VI

named APx500 Config-Level & Gain GetSet All (available from the Configuration sub-palette, as

shown in Figure 25) to the block diagram. Insert this VI between the Utility – Strings to Signal

Path & Measurement VI and the Perform Measurement VI. Be sure to connect the input and

output wires (the .NET reference, the Signal Path & Measurement and the error cluster). Next,

add a Boolean True constant to the diagram and wire it to the Set connector on the VI. Finally,

right-click on the Level & Gain Config input terminal of the VI just added, and select Create –

Control, to create a Level & Gain Config control. The block diagram should now be similar to

Figure 26.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 25 of 64

Figure 25

Figure 26

Now look at the Level & Gain Config control on the front panel of the VI. Figure 27 shows the

front panel (you may need to rearrange controls and indicators to make your front panel match

Figure 27). This control is a LabVIEW cluster control, that contains two other cluster controls -

one at the top called Signal Generator Settings (L&G), and another below it called Signal

AcqAnalysis Settings (L&G).

Now look at the APx UI. With the Level and Gain measurement highlighted in the Navigator,

you may notice the similarity between the LabVIEW cluster controls and the APx controls used

to configure the measurement, located in the grey panel to the right of the Navigator tree (Figure

28). The LabVIEW controls have been designed to have a one-to-one correspondence with the

APx controls. This is obvious in the case of the Signal Acquisition and Analysis control, because

there is only one control in this case (Low-pass Filter), and both LabVIEW and APx have the

same control. But what about the Signal Generation Controls? Why are there more controls in

the LabVIEW cluster than there are in APx? In fact, the APx UI has the same number of controls

as the LabVIEW cluster, but they are not all visible at the same time. The APx500 application

hides any controls that are not relevant in a given measurement context.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 26 of 64

Figure 27

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 27 of 64

Figure 28

For example, Figure 28 shows the APx Signal Generation controls for the case of an Analog

Output Connector type, when the Waveform type is Sine (the standard sine generator). Figure 29

shows other variations in the Signal Generation controls, depending on whether the Output type

is analog or digital, and the Waveform type is Sine or Arbitrary Waveform.

a) Digital Output, Sine generator. b) Analog Output, Arbitrary waveform. c) Digital Output, Arbitrary Waveform

Figure 29. Variation in Signal Generation controls displayed by Output type and Waveform type

By studying Figure 28 and Figure 29, you can see that the LabVIEW Signal Generator Settings

cluster contains all of the basic generator controls that could be needed for any combination of

output type and waveform type. On first glance, it might appear that this doesn’t make sense - for

example, why make the digital level control visible when using the analog generator? However,

it should be noted that (1) these are driver VIs that are not meant to be visible, not a User

Interface, and (2) the controls must be present in order for LabVIEW to be able to pass them into

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 28 of 64

and out of a subVI. Hence, the controls for all signal path contexts are present, and it is up to you

to ensure that your program uses the right controls.

How the Driver VIs Handle Units in Configuration Settings

The APx500 application has sophisticated controls that have the following features:

• Numerical value and units are combined in one control (e.g., 1.000 Vrms)

• Values are converted to SI formatting (e.g., 1.000 mVrms or 1.000 μVrms)
• Conversion among units occurs within the control (e.g., Vrms, Vp, Vp-p, dBV, etc.)

In the APx LabVIEW .NET Driver VIs, controls for setting the measurement configuration

handle this by using a numerical control accompanied by a units control. Hence, as shown in

Figure 30, to set the analog generator to 100 mVrms, you would set the Analog Level control to

100m, and the Analog Units control to Vrms. To set the analog generator level to -20 dBV, you

would set the Analog Level control to -20.0 and the Analog Level Units control to dBV. Note

that LabVIEW controls do support the use of SI formatting (100m = 0.100, 10.0k = 10,000, etc.)

Figure 30

Units are handled differently for results returned from APx. This will be discussed in the section

on Accessing Measurement Results, later in this document.

Changing Measurement Settings–A Simple Example

Now that we’ve covered units, we are ready to try configuring the Level & Gain measurement

settings using the My APx Program VI. When the Level & Gain Config cluster control was

added to the VI, it had the default settings that a Level and Gain measurement would have when

first added to the APx project. Open the APx500 application and ensure that the Connector in

Output Configuration is set to Analog Unbalanced (Figure 31).

Figure 31

Next, change the values of some of the controls in the Level & Gain Config cluster on the front

panel of the some of the My APx Program VI. For example, change the Analog Level to 200m,

the Frequency to 2.0k, uncheck some of the checkboxes of the Generator Chs enabled control,

and change the Low-pass Filter from None to 20 kHz (Figure 32). Now run the VI. The

corresponding settings in the APx Level and Gain measurement will be changed and the

measurement will be run.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 29 of 64

Figure 32

Changing Measurement Settings–A Better Example

The simple example above works, but it has the disadvantage that it will change all of the Level

and Gain Generator and Signal Acquisition settings to the values in the LabVIEW cluster

control. This is not how most users will want to interact with APx; most users will want to

change only one or two settings – for example the generator level or the generator frequency. To

accomplish this, the LabVIEW VI will have to read the current state from APx and then allow

the user to change the one or two desired settings. The measurement configuration VIs were

designed specifically with this in mind. To see how, let’s take a look at the context help for the

APx500 Config-Level & Gain GetSet All VI (Figure 33).

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 30 of 64

Figure 33

As shown, this VI has two functions: it can be used to get the configuration settings from APx or

to set them. Note that the GetSet VI always reads the settings back from the APx500 application

after setting them. This ensures that the state of the APx500 application is always maintained by

the application itself rather than by LabVIEW. This helps to prevent confusion.

So let’s look at how to use these Get and Set functions in a LabVIEW VI. We will modify the

My APx Program VI to be interactive, to allow the user to change only the specific controls that

they wish to. Proceed as follows.

1. In the My APx Program VI, delete the Perform Measurement VI, the Simple Error Handler

VI and the Measurement Complete indicator. These will be added again later. Next, add

white space to the diagram as shown in Figure 34 (e.g., using Ctrl-drag with the mouse).

Figure 34

2. Add a Boolean button control to the front panel and label it “Update APx Settings” (Figure

35).

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 31 of 64

Figure 35

3. Add an Event Case around the APx500 Config-Level & Gain GetSet All VI, move the Update

APx Settings control into that case, and change the event handled by the case to be a Value

Change of the Update APx Settings control (Figure 36). When the modifications are finished,

this will cause the configuration settings to be sent to APx when the button is pressed.

Figure 36

4. Add a While loop around the event case, change its input tunnels to shift registers, and then

wire and rearrange the shift registers as shown in Figure 37.

Figure 37

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 32 of 64

5. Create a local variable for the Level & Gain Config control as follows. Right-click on the

control’s terminal on the block diagram and select Create – Local Variable. Insert the local

variable between the beginning of the While Loop and the Event Structure, and wire it as

shown. You will need to add another shift register to the While Loop (Figure 38).

Figure 38

6. To make this VI function properly, we need to connect something to the input of the shift

register created in step 5. Otherwise, the Level & Gain Config control will not be initialized

properly. We want to initialize it to the values that are currently set in APx. Therefore, we

need to get the values from APx. Add a copy of the APx500 Config-Level & Gain GetSet All

VI to the diagram outside the While loop and wire it as shown in Figure 39. Note that the

nothing is wired to the Boolean Set input at the top of the VI. Hence the default value (Get)

will be used, causing the VI to get all the current settings from APx and initialize the Level &

Gain Config control to those values.

Figure 39

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 33 of 64

7. To make the VI functional, we need to wire something to the conditional terminal of the

While loop. Create a stop button by right-clicking on the terminal and selecting Create –

Control. Next, create a Stop case in the event structure, move the Stop control’s terminal

inside the case and wire it as shown in Figure 40.

Figure 40

8. Next, we will add the capability to run the Level and gain measurement. Add a Boolean

button Control to the front panel and change its label to “Run Measurement”. On the block

diagram, add a case to the event structure that handles a value change of this control, and

move the control’s terminal inside this case. Finally, add the Perform Measurement VI to this

case and wire the case as shown in Figure 41.

Figure 41

The front panel of the finished VI is shown in Figure 42. When you run this VI, it will get the

current Generator and Signal Acquisition and Analysis settings from the APx application and

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 34 of 64

initialize the LabVIEW Level & Gain Config control to these values. Then, you can change

various settings in the LabVIEW control, and pass the settings to APx by clicking the Update

APx Settings button. To try it, before running the VI, change a few of the Generator settings in

APx. Once you run the VI, it will update the Level & Gain Config control to the current APx

settings. Next, change some settings in LabVIEW and then click the Update APx Settings button,

to change the settings in the APx500 application. Finally, you can click the Run Measurement

button in LabVIEW to make the APx500 application run the Level & Gain measurement.

Figure 42

Note that if the Output Connector is one of the analog types (Analog Unbalanced or Balanced),

when you run this VI, it sets the Digital Level control to 0.00 and its units to FS. Furthermore, if

you change the Digital Level control and again click the Update APx Settings button, it again

resets the Digital Level to 0.00 and the units to FS. This is because the Digital Level setting has

no meaning in the context of a signal path with an Analog Output. Therefore, you should be

careful to ensure that the context is correct for the controls you are using. For example, if you

change the Signal Path from LabVIEW (to be discussed later in this document), be sure to get the

measurement configuration settings after doing so.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 35 of 64

Generating Arbitrary Waveforms with the LabVIEW Driver VIs

In the APx500 application, by default the Waveform type is Sine. This refers to the Sine

generator built in to APx. Depending on the signal path setup, many of the measurements also

allow other built in waveforms, such as Square waves, Split Sine waves or Split Phase, and

arbitrary waveforms using imported .wav files. To add an arbitrary waveform to the project, the

user selects the Browse for file… option in the Waveform list box control (Figure 43, left) and

selects a waveform file from a disk drive on the PC. Once waveforms have been added to the

APx project, they are available for selection from the list box (Figure 43, right). To revert back to

the Sine generator, the user simply selects Sine in the list box.

Figure 43

In the LabVIEW driver VIs, this waveform functionality is accessed using the controls shown in

Figure 44, which are part of the Signal Generator Settings cluster. In the LabVIEW Driver, the

Waveform Names control is an array containing the names of all the waveforms loaded into the

APx project, and the Selected Waveform Index is the index of the Waveform Names array

corresponding to the currently selected waveform. For example, the left side of Figure 44 shows

how the controls would appear if the APx waveform was set to Sine (index 0), and the right side

of Figure 44 shows how the controls would appear if the APx waveform was set to the 4th

arbitrary waveform contained in the project (in this case the file named 7kHz-L_8kHz-R.wav).

In LabVIEW, it is the Selected Waveform Index that is used to change the waveform in APx.

Figure 44

You can use the My APx Program VI to try this out: First load a few waveforms into the APx

project using the Waveform – Browse for file… option shown on the left side of Figure 43. Set

the Waveform control in APx to any one of the loaded files. Then run the VI. The Waveform

Names control in LabVIEW will be updated to contain the list of waveforms you just loaded, and

the Selected Waveform Index will correspond to the index of the selected waveform. To change

the Waveform in APx, change the Selected Waveform Index to a different number, and click the

Update APx Values button. The APx waveform selected will change accordingly. To change the

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 36 of 64

Generator back to Sine, change the Selected Waveform Index in LabVIEW to 0 (zero) and click

the Update APx Values button.

Note that there is no provision in the APx API for adding waveforms to a project; they can only

be added to a project from the APx500 application’s UI.

Measuring .wav Files with the LabVIEW Driver VIs

When the Input Connector in Signal Path Setup in APx500 is set to File (Analog Units) or File

(Digital Units) a button labeled “File List…” appears in the Signal Acquisition and Analysis

section of the measurement controls area. When clicked, this button allows the user to specify a

list of .wav files to be measured (Figure 45).

Figure 45

In the LabVIEW Driver VIs, this list of .wav files is handled as a string array labeled “Input File

List” in the Signal Acquisition and Analysis Settings cluster control (Figure 46). When

LabVIEW gets the settings, this string array will be loaded with strings such that each element of

the array represents the full name and path of one file in the APx file list. The LabVIEW String

to Path function can then be used to convert these strings to LabVIEW file paths. To remove a

file using LabVIEW, string elements may be removed from the end of the array before passing

the array back to APx using the set function.

Figure 46

Recap–Configuring Measurement Settings

The above example illustrates changing the APx Signal Generator and Signal Acquisition and

Analysis settings for the Level and Gain measurement. The APx LabVIEW .NET Driver VIs use

this same model to change the settings of all measurements in APx. If you look at the

configuration section of the VI Tree (Figure 11) you will see that each measurement has either

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 37 of 64

one or three configuration VIs. Those measurements with three VIs are ones like Level and Gain,

which have both Generator settings and Signal Acquisition and Analysis settings. In this case,

there is a GetSet Generator VI, a GetSet Signal Acquisition & Analysis VI and a GetSet All VI.

This allows LabVIEW user to get or set either of the Generator settings, the Signal Acquisition

and Analysis settings, or both.

Measurements with only one configuration VI are those which in APx have only Generator

settings (e.g., Frequency Response) or Signal Acquisition and Analysis settings (e.g. Noise), but

not both (Figure 47). These VIs should be used exactly as described above. You should get the

current settings from APx before changing any parameters, and then do a set to update APx. In

addition, the set VIs always do a get after setting, to ensure that they return the correct state of

APx.

Figure 47

About the Orange Colored Controls

You may be wondering why the LabVIEW Driver VI cluster controls introduced so far in this

document have been orange colored. It’s not because we like the color orange. Rather, the

controls colored orange in the driver VIs are a special type of LabVIEW custom control known

as a Type Def. (short for Type Definition). In LabVIEW, a Type Def. control is a kind of

“master” control.

When a Type Def. control is used in a collection of VIs, it is much easier to maintain the code

because if you alter the Type Def, any VIs containing that control will be automatically updated

as well. This is a handy feature. For example, there is a Low-pass Filter control that is used in

many of the VIs in the driver collection. Suppose that the number of VIs it is used in is fifty. If a

Type Def. was not used for this control, when a new type of Low-pass filter is added to APx in

the future, all fifty of the VIs containing this control would have to opened and modified

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 38 of 64

individually. Since the control is a Type Def., it only needs to be changed once, and the fifty

dependent VIs will be updated automatically. The orange color is used simply to make it obvious

that a custom control is a Type Def.

It is easy to change the orange color of controls used in the driver VIs. First, you need to

disconnect the control from its Type Def. To do so, right-click on the edge of a cluster control

and select Disconnect from Type Def. You will be prompted with a dialog box to confirm this

operation. Note that many of the cluster controls contain sub-controls that are also Type Defs.

Therefore, you may need to disconnect several controls from their Type Defs to completely

remove the orange color. Figure 48 illustrates the process for one of the Type Defs in the Level

& Gain Config cluster, and the final result when the color of every orange control has been

changed.

Figure 48

Working with Cluster Control Subsets

Most users will not want to set all of the controls included in a large control cluster like the Level

& Gain Config control. For example, suppose you are only using the Analog Unbalanced Output

Connector in APx, and all you want to do is control the generator level and frequency. In this

case, most of the controls in the Level & Gain Config cluster are not necessary. To handle this

scenario, consider customizing controls.

For example, in the My APx Project VI, let’s create a control that will allow us to change only

the analog generator level and frequency. Proceed as follows.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 39 of 64

1. Since we are only changing the generator settings, we can use the Level & Gain GetSet

Generator VI instead of the GetSet All VI. Right-click on the GetSet All VI on the block

diagram, and use the Replace menu to change the VI (Figure 49).

Figure 49

2. Disconnect the Level & Gain Config control from its Type Def. (if is not already

disconnected) and disconnect the Signal Generator Settings (L&G) cluster from its Type Def.

3. Drag the Frequency and Analog Level controls out of the Level & Gain Config control

cluster.

4. Delete the Level & Gain Config cluster, so that only the Frequency and Analog Level

controls remain in its place (Figure 50 and Figure 51).

Figure 50

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 40 of 64

Figure 51

5. Finally, rewire the block diagram as shown in Figure 52. Note the use of the Unbundle by

Name function outside the Event Structure, and the use of the Bundle by Name function.

These functions are used to get the values of only the Frequency and Level controls from the

Signal Generator Settings (L&G) output cluster, and to pass them back in to the

corresponding input cluster.

Figure 52

The My APx Program VI as modified to allow the user to change only the generator frequency

and level of the Level and Gain measurement is now ready to run. If you run it, you will see that

it functions as it did before.

The APx LabVIEW .NET Driver VIs use cluster controls extensively. The best way to get

individual data items out of a cluster or into a cluster is by using the Bundle by Name and

Unbundle by Name functions in LabVIEW. Figure 53 (left) shows the Unbundle by Name

function being used to extract specific elements of the Signal Generator Settings (L&G) cluster.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 41 of 64

Figure 53

Figure 53 (right) shows the Bundle by Name function being used to replace 4 specific elements

of a Signal Generator Settings (L&G) cluster.

Accessing Primary Measurement Results with the LabVIEW Driver

Although the examples to date have illustrated running measurements in APx, we haven’t yet

considered how to work with the results of APx measurements. To be of value, an external

program that controls the APx500 analyzer must be able to access the measurement data. This

section will focus on accessing APx primary measurement results (results that normally appear

when you add a measurement to the navigator) with the LabVIEW driver. The following sections

discusses derived measurement results

First, let’s review what measurement results look like in APx. Create a new project in APx using

the default project template, and add a Stepped Frequency Sweep to Signal Path1. If you expand

the branch of the Navigator tree containing the Stepped Frequency Sweep measurement, you will

see a number of objects within this branch named Level, Gain, Relative Level, etc. These are

measurement Results of the Stepped Frequency Sweep measurement. They can also be selected

by clicking on the appropriate icon in the window beneath the Graph in APx (Figure 54).

Figure 54

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 42 of 64

In the case of the Stepped Frequency Sweep measurement, there are seven results available. If

you run a Stepped Frequency Sweep measurement and browse through the results, you will

notice that six of the seven results are displayed as an XY graph (e.g., Level is displayed as a

graph of Level versus frequency). These are referred to as XY type results. One of the results in

the collection - Deviation - is displayed as a bar graph with one bar per channel Figure 55. These

latter results, which consist of a single value, are referred to as Meter type results.

Figure 55

Each measurement has a different results collection - some have all Meter type results, some

have all XY type results, and some have a combination of the two result types.

Now let’s look at how the LabVIEW driver handles measurement results.

Open the APx500 Example-Simple Meter Measurement VI (available from the Examples sub-

palette of the driver palette) and examine its front panel. Ignore the orange color of the controls.

This simply denotes that they are still associated with their Type Defs. This VI is set up to

configure and run a Level and Gain measurement located in Signal Path1 (one of the defaults for

a new project file created with the default template). Notice that the Selected Measurement Index

is set to 3 (the position of the Level and Gain measurement in Signal Path1.

The Level & Gain Config control as set in the project will set the analog generator to 100 mVrms

or -20 dBFS at 1 kHz, and enable all generator channels. Configure the APx500 application to

use two Input Channels (in Signal Path Setup). Now run the VI and observe the contents of the

Measurement Results Cluster (Figure 56). Note that it now lists the Path Name as Signal Path1,

and the Measurements array inside the Measurement Results cluster has one element - with

Measurement Name field containing “Level and Gain”. Inside the Data cluster are two more

arrays named “XY Results” and Meter Results”. Note that the XY Results array is empty (this

makes sense, because Level and Gain has no XY type results). Also, the Meter Results array has

two elements: one for the Level result and one for the Gain result. As shown, clusters in the

Meter Results array contain an indicator showing the result name, the units, and whether all

channels passed upper and lower limits.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 43 of 64

Figure 56

If you change the index of the Meter Results array, you will notice that there are two elements in

the array, corresponding to the two results available (Level and Gain). Inside the cluster is an

array called Readings, which in turn contains a cluster of result Values, and indicators Passed

Upper Limit and Passed Lower Limit (Figure 57). Note that the number of elements in the

Reading array corresponds to the number of Input channels selected in APx (in this case two).

Figure 57

At first glance, the Measurement Results cluster appears complicated. However, if you study it,

you will find that the data is organized in much the same fashion as the measurements results are

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 44 of 64

organized within the APx500 application. Furthermore, it is a very efficient scheme for getting

the measurement data from APx, because all of the results from one measurement are contained

in a single cluster that can be passed to subVIs in a single wire (Figure 58). In fact, the

Measurement Results cluster can hold the results for all the measurements in one signal path.

This will be demonstrated later, with an example that runs a Sequence in APx.

Figure 58

Note in Figure 58 that there are only three VIs needed to open a reference to APx, select and run

a Level and Gain measurement, and get back all the data for that measurement.

There is a similar example in the driver VI collection named APx500 Example-Simple Sweep

Measurement.vi. This example runs a Stepped Frequency Sweep and returns the Measurement

Results cluster. If you run it, you will see that the XY and Meter results returned correspond to

those available for this measurement in APx.

There are two driver VIs in the collection that simplify getting Meter results and XY results from

the Measurement Results cluster. Their context help is shown in Figure 59.

Figure 59

For an example of how to use the above two VIs, see the example VI named APx500 Example-

Simple Data Results, available from the Examples sub-palette of the driver menu Palette.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 45 of 64

Handling Dynamic Measurement Results

Measurement results are dynamic, meaning that they can be added, deleted, or renamed.

Furthermore, derived measurement results, which are computed from a source result, may also

be added, deleted, or renamed. When using the LabVIEW driver to access APx data, the main

consequence of this is that you need to ensure that the desired result exists in a measurement, and

that you are using the correct result name. Otherwise, the APx API will throw an exception.

In Sequence mode, when a single measurement is run, this is equivalent to right-clicking on a

measurement in the APx software and selecting Start Selected Measurement. Once the

measurement is complete, APx builds the Sequence results collection, which contains all the

results that were checked before the measurement was run. If you use the VIs in Figure 59 to

attempt to access meters or XY result data, the sequence collection will not contain the desired

result if the result name does not match, the result was deleted from the measurement, or the

result’s checkbox was unchecked in the navigator. To handle this case, a custom error (number

7001) has been created, as shown in Figure 60.

Figure 60

Returning All Data Points

In Sequence mode, measurement results are added to the Sequence Data Buffer every time the

sequence is run. Whether XY result data is Same as Graph or All Points depends on the Result

Specification that is set for each measurement result before the sequence has been run. The

following VIs are affected by the Result Specifications:

• APx500 Sequence – Get Measurement Results

• APx500 – Sequence Run All Measurements

• APx500 Sequence – Perform Measurement

The following VIs always return All Points:

• APx500 – Run Continous Sweep and Get Acquired Waveform

• APx500 – Run Signal Analyzer FET All Points

• APx500 – Run Signal Analyzer Scope All Points

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 46 of 64

The default Specification is Same as Graph, so in order to retrieve All Points, the settings must

be changed. This can be done in the Export Graph Data dialog box of each measurement (note

that you need to already have result data, and need to export to a file in order to save the

Specification changes).

Figure 61 Export Graph Data, Same as Graph

Figure 62 Export Graph Data, All Points

We have also created a VI, APx500 Data – Set All Points, that traverses every Signal Path,

Measurement, and Result in a project and sets the Specification to All Points. This VI only needs

to be run once and then the project may be saved to preserve the Specification settings.

Note the following pointers about saving data:

• If the number of points is low, then Same as Graph and All Points may return the same data

set.

• The Bench mode VIs, APx500 Bench – Get Measurement Results, and APx500 Bench –

Export Results, always get All Points.

• When using a .NET invoke node to retrieve data directly from a measurement (instead of

from the Sequence Data Buffer), use GetAllXValues and GetAllYValues to get All Points.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 47 of 64

Figure 63

• When using a .NET invoke node to export data from a measurement to a file, use All Points

as the exportSpecification argument.

Figure 64

How the Driver VIs Handle Measurement Data Units

Currently, driver VIs are configured to return measurement data in the same units as currently set

within the APx500 application. To use different units for a measurement result, you must change

the units displayed for that result in the APx500 application.3

Running an APx Measurement Sequence

Included in the driver collection is a VI named APx500 Example-Run Project Sequence.vi. This

example is equivalent to clicking the Run Sequence button in APx. It will run all checked

measurements within all checked signal paths and return all measurement results for the entire

sequence in a LabVIEW array of Measurement Results. Figure 65 shows the Measurement

Results array that resulted from a Sequence being run on an APx project with two signal paths.

The first checked measurement in the second signal path (index zero) was a Continuous Sweep

measurement. Note that the elements in this array of clusters are the same as Measurement

Results cluster returned by the Perform Measurement VI. In this case, the array contains one

element for each signal Path in the sequence. This is a very efficient way to get an entire

sequence worth of measurement data from APx to LabVIEW. And as shown in Figure 66, the

LabVIEW code required to get all this data is very simple.

3 Note the API provides the ability to change units programmatically, but this is not supported in this release of the

APx LabVIEW Driver.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 48 of 64

Figure 65

Another variation on running a sequence is illustrated in the example named APx500 Example -

Run Sequence & Save PDF Report.vi, shown in Figure 67. This example was designed to look

more like a User Interface (there are no orange colored controls). It runs a sequence and

optionally exports the APx report to an external file (PDF, HTML, RTF, xls or text). This

example illustrates the use of three utility VIs included in the driver collection: one to open a

project file, one to set the visibility of the APx500 application, and one to turn the APx signal

monitors on or off. See the context help for these VIs in Figure 68. Note that turning the signal

monitors off can save significant CPU resources, especially with high channel counts.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 49 of 64

Figure 66

Figure 67

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 50 of 64

Figure 68

The User Interface Example

One of the examples included with the driver is a full-featured user interface. Please see the VI

named APx500 Example - User Interface.vi, whose front panel is shown in Figure 69. This VI

allows the user to load any APx project file. It then gets a list of all Signal Paths and

measurements included in the APx project, and adds them to the Selected Signal Path and the

Measurement Selection controls, respectively, on the Test Configuration Panel of the VI. While

the VI is running, whenever the user changes the Measurement Selection, the configuration

controls for that measurement become visible on the panel to the left of the Test Configuration

panel. Here, the user can change any of the measurement configuration settings.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 51 of 64

Figure 69

The Perform Measurement button on the Test Configuration panel will cause the APx500

application to run the selected measurement. After the measurement is complete, on the Test

Results panel, the user can select which measurement results to display. XY graph type

measurements are displayed as a graph, and Meter type results are displayed as a list.

This example VI can also be used to run all checked measurements in the sequence. If the

sequence is run from the VI, all of the sequence measurement results will be available for

browsing in the Test Results panel of the VI.

The User Interface example is not meant to replace the APx500 application’s UI, but it does

demonstrate many of the feature available in the LabVIEW Driver for working with the APx

API. You may wish to customize this example to create LabVIEW applications that suit your

own needs.

Configuring the Signal Path Setup

The most convenient way to configure the Signal Path Setup in APx is to do so using the

APx500 application’s UI, then save the project to a project file, and open the project file from

LabVIEW. However, if you want to configure the Signal Path Setup from LabVIEW, the driver

does have VIs to do so. The first two VIs to consider in this regard are shown in Figure 70. One

will get or set the Output Connector Type and the other will get or set the Input Connector Type.

The function of these VIs is very similar to that of the measurement configuration VIs discussed

earlier.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 52 of 64

Figure 70

For an example of how to set the Output Connector Type, see the VI named APx500 Example -

Set Output Connector Type.vi. This VI’s front panel is shown in Figure 71, and its block diagram

is shown in Figure 72. If you run the VI and change the Output Connector Type, this change will

be reflected in the APx500 UI, if the connector type is valid for the connected instrument. If the

connector type is not valid (for example, setting the control to Digital HDMI when the HDMI

option is not present), APx will generate an error. The function of the GetSet Input Connector

Type VI is very similar.

Figure 71

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 53 of 64

Figure 72

In the APx500 application, settings can be configured for each Input and Output Connector type.

Note the Settings… button to the right of the Connector list box control in the Output

Configuration area of Signal Path Setup. When you click this button, the Output Settings dialog

box for the selected connector type opens as shown in Figure 73. There is a similar Settings

dialog for the Input Configuration in APx500.

Figure 73

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 54 of 64

In Figure 73, the selected Output Connector is Digital Unbalanced. The VI for configuring these

settings is named APx500 Config-SigPath GetSet Output Digital Unbalanced. Its context help

and configuration settings control are shown in Figure 74. Note the correspondence between the

LabVIEW controls in Figure 74 and the APx500 controls in Figure 73.

Figure 74

There are similar VIs for configuring input configuration settings and output configuration

settings for all the possible instrument connector types. Note that the VIs for Digital Serial do not

provide all the settings, but allow you to select a Digital Serial settings configuration file where

all the settings can be stored. In addition, there is no VI for the None (External) output connector

type, because in this case there are no settings to set.

Figure 75 shows an example VI from the driver collection named APx500 Example - Configure

Digital Unbalanced Output. This example illustrates configuring the Digital Unbalanced output

connector settings from LabVIEW. It is similar in structure to the example shown in Figure 71.

Figure 75

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 55 of 64

Reference Levels

There are two sets of VIs in the driver collection for dealing with APx500 reference levels. The

first is the VI named APx500 Utility-Get Set Reference Levels. This VI is similar in function to

the other configuration VIs. A cluster named Reference Levels is passed into and out of this VI.

The context help for the VI and the Reference Levels cluster are shown in Figure 76. Note the

similarity of the controls in the cluster to those on the References page (accessed from the

References… button near the bottom of the APx500 screen in the Reference Levels

measurement).

Figure 76

To set a reference level in LabVIEW, the procedure would be (1) get the reference levels cluster

to determine the current settings, (2) use the Bundle by Name function to change the value of the

reference level you want to change, and (3) set the reference levels using this VI to update

APx500.

There are two additional VIs in the driver collection related to reference levels. These VIs are for

accessing the auto-set generator level feature in APx500. The window in Figure 77 becomes

visible in APx when you click the Auto Gen Level… button in the Signal Generation box of the

Reference Levels measurement.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 56 of 64

Figure 77

The VI on the left side of Figure 78, called Reference Levels GetSet Auto Gen Level.vi is used to

get or set the auto-set generator level settings. The VI on the right side of Figure 78 is used to

initiate the auto-set generator level measurement. It is equivalent to pressing the Set Generator

Level button (at the bottom of the window shown in Figure 77.

Figure 78

Note that the Auto Gen Level feature is a type of regulation measurement that iteratively tries to

find a generator level that produces the specified distortion. If it can not find a suitable generator

level, APx will generate an error that will be returned to LabVIEW. However, the error message

passed to LabVIEW in this case is not as easy to understand as the one generated by APx (Figure

78).

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 57 of 64

Figure 79

Figure 80 shows the front panel of an example VI included in the driver collection that illustrates

working with auto-generator level VIs.

Figure 80

Acquiring Raw Data from the Signal Analyzer Measurement

The measurement VIs discussed so far contain data equivalent to what is displayed in the

APx500 XY graphs and bar graphs. This is ideal for most applications. However, there may be

situations in which a user wants to access all of the measurement data. Figure 81 shows two VIs

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 58 of 64

that are included for this purpose. The VI on the left runs the Signal Analyzer measurement and

returns an array of LabVIEW waveform data containing all the acquired points. The VI on the

right is similar, except that it returns an array of FFT spectra containing all FFT points. These

VIs are useful if you want to perform FFT calculations, or conduct some analysis that is not

included in the APx500 application.

Figure 81

Controlling Input and Output Switchers

A set of four VIs to control switchers is included on the Switchers sub-palette (available from the

Signal Path sub-palette of the Configuration palette) as shown in Figure 82. These can be used to

get or set the input switcher configuration, get or set the output switcher configuration, open a

switcher configuration file or save a switcher configuration file. The context help for the Get/Set

Input Switcher VI is shown in Figure 83.

Figure 82

Figure 83

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 59 of 64

Using the WaveReader DLL

The WaveReader DLL provides functions that can be called from an external program, to enable

transfer of acquisition data from an APx analyzer to that program in near real time. The DLL

uses the APx500 Measurement Recorder measurement and its ability to save acquisition data to a

.wav file. Two VIs that provide this functionality in LabVIEW are shipped with the driver

(Figure 84 and Figure 85). These VIs are located with the DLL in the APx500 Examples

LabVIEW project within the WaveReaderSupport folder (see Figure 12).

Figure 84

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 60 of 64

Figure 85

Figure 86 shows an example VI from the Driver Examples folder that illustrates using the

WaveReader DLL. This example, with the accompanying APx project file

(WaveReaderExample.approjx), illustrates acquiring two channels of data at a 48 kHz sample

rate from APx500 with the VI’s waveform and FFT graphs being updated every 0.1 seconds. The

example uses a chirp signal that sweeps from 20 Hz to 20 kHz in 3 seconds.

Figure 86

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 61 of 64

After loading the project file, be sure to change the Save to File directory in Measurement

Recorder to a valid location on your PC. The Wavereader DLL reads a maximum of 64k samples

but can be called in a loop, as shown in the example, to read any length. To make sure that

memory is released, the LabVIEW .NET Close Reference VI should be used to close the

Wavereader reference after use.

Directly Accessing .NET Methods and Properties

There is additional advanced functionality in APx500 that is not built into the provided drivers.

However, you can access this functionality by modifying the existing VIs or by constructing

your own VIs to access any method or property that exists in the APx500 .NET API. To see all

the methods and properties available, open the API Browser from the APx500 folder in the

Windows Start menu.

Example: Adding a Method

The following example will step through constructing a VI to invoke a method. This VI will

independently set the generator level for each channel in the Level and Gain measurement. In the

APx500 UI, this functionality is provided by clicking the Advanced Settings button in the

Settings Panel of the Level and Gain measurement. In general, the settings and options in the

Advanced Settings dialog of most measurements are not already provided in the LabVIEW

driver.

Figure 87

a) Place an APx Open VI. Then, right click on the APx500 Reference Out terminal of the

VI, select Create > Property for AudioPrecision.API.APx500 Class, and choose

LevelAndGain. Note that you can also perform this operation on the APx500 Reference

Out terminal of any existing APx LabVIEW .NET Driver VI.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 62 of 64

Figure 88

b) From the LevelAndGain property, right click and create a new Generator property for the

ILevelAndGainMeasurement class. Wire it to the LevelAndGain property.

Figure 89

c) Connect the new Generator property, and then in a similar way add an AnalogLevels

property to the ILevelAndGainGenerator class. From the AnalogLevels property, create a

SetValue method and connect it.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 63 of 64

Figure 90

d) Add an additional SetValue method for channel 2 and complete the VI as shown above.

Example: Adding a Property

a) Place an APx Open VI. Then, right click on the APx500 Reference Out terminal of the

VI, select Create > Property for AudioPrecision.API.APx500 Class, and choose

LevelAndGain. Note that you can also perform this operation on the APx500 Reference

Out terminal of any existing APx LabVIEW .NET Driver VI.

b) From the LevelAndGain property, right click and create a new Generator property for the

ILevelAndGainMeasurement class. Wire it to the LevelAndGain property.

c) From the Generator property, right click and create a new On property for the

ILevelAndGainMeasurement class. Wire it to the LevelAndGain property. Expand the

property node and add an AnalogSineMode property.

d) Add indicators for the On and AnalogSineMode properties.

Figure 91

e) Many properties can set to either read or write. To change a property from write to read,

right-click on the property and choose “Change To Write”.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 64 of 64

Figure 92

f) After changing the property to write, wire a control or a constant to it.

Figure 93

You can see additional examples by simply opening up any VI in the APx LabVIEW .NET

Driver and opening its sub VIs until you see the .NET methods and properties. In this way, you

can also modify any of the provided VIs to access to additional functionality. However, if you

make modifications, be sure to save the VI with a new name so that your changes don’t get

overwritten the next time you upgrade the driver.

Conclusion

We hope that the APx LabVIEW .NET Driver will be a good resource for LabVIEW developers

wanting to control and interact with an APx audio analyzer. If you need additional information,

check the downloads and knowledge base sections at www.ap.com or call our Technical Support

department for assistance.

Copyright © 2016 Audio Precision

XVI0913170400

http://www.ap.com/

