Getting Started with the Audio Precision
APx LabVIEW .NET Driver

version 4.5, September 2017

Introduction

The APx LabVIEW .NET Driver is a collection of Virtual Instruments (\V1s) that provides the
ability to access most of the functionality available in the APx500 Application Programming
Interface (API) using high level, LabVIEW-typical subVIs, with a minimum number of
programming steps. Using the driver collection, you can quickly and efficiently develop APx
applications with clean, concise LabVIEW code.

Contents

INEFOTUCTION. ...ttt bbbt bbbt bbb s bt bbb et et e bt bt n bt bbb r e 1
HOW 10 USE THIS DOCUMENT.euteutiiieiieiistest ettt bbbt b et b ettt b b e nn e 2
2103 (o {1 T SRRSO PPP 2
LabVIEW Version REGUIFEIMENTScuiiiiiiie ettt ettt ste st e s e te e besre et e be e e stesbaesbesbeereesbesneeneesreans 3
Driver Version INFOMMALIONoiiiiiiiiii ittt 3
WHhat’s NEeW 11 VEISION 4.57 ...cuuiiiiieeiieeiiie e st e s see e st e s te e e stteeastee e ta e e ssteeesseeessteesteeessteeaseeessaeesnteeesnteesnsenans 3
Upgrading Existing LabVIEW Projects and VIS ..o 3
FBATUIES ...t et 7
LIMMIEAEIONS ...t b bbb bbb bbb bbb b 7
INSTAITALION. ...t bbbt b bbbt e e n e 7
Running LabVIEW in AdMINISTrator MOGEcc.oiiiiiiiiiiiiie e 8
Organization OF the DIIVETc.oiiiiiiiiitetee ettt bbbttt b bbb e 8
Use a LabVIEW Project and Corresponding .config File ..o 11
THE APXS500 OPEN V1 ...ttt ettt st et e st e e st e s beete e besaeeseesbeeaeesbesteeneesreeteeeesaean 13
Getting Started—A First Simple APX LADVIEW V...t 14
USING the APX500 CIOSE V..ot bbbttt 15
Running a Measurement in the APX PrOJECT.........c.oiiiiiiiiiiiie e 16
g o] T | 1T T [OOSR 21
The Signal Path & MeasuremMeNt CIUSTETcviiiii st sreste e b sae s 22
Changing APx Measurement Settings With the DIIVEr VIS ... 24
How the Driver VIs Handle Units in Configuration SEttingsccooeieiriiinine e 28
Changing Measurement Settings—A SImple EXaMPIEcccoiiiiiiiiiiii s 28
Changing Measurement Settings—A Better EXampPle.........ooo oo 29
Generating Arbitrary Waveforms with the LabVIEW Driver VIS........cccoooioiiiiiiie e 35
Measuring .wav Files with the LabVIEW DIIVET VISccoiiiiiiiiiiesee s 36
Recap—Configuring Measurement SEHINGSoovieiiiriiiieie e e 36
About the Orange Colored CONIOIScoiiiiiiieeee bbb 37

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 1 of 64

Working with Cluster Control SUDSELScoiiiie e 38

Accessing Primary Measurement Results with the LAbVIEW DIiVer ... 41
Handling Dynamic Measurement RESUILS..........ccuoiiiiiie it 45
RetUrning Al Data POINESc..oiieiiiece ettt st et s b e te e beste e e e resneesrenrs 45
How the Driver VIs Handle Measurement Data UNItSccovoveiiiiiieniiiiie e 47
Running an APX MeasuremMeNt SEQUENCEccueireiiieieiisiesie sttt 47
The User INterface EXAMPIEoviiiiiiiiiie et 50
Configuring the Signal Path SELUP........coiiiiiiiii et sre et be e neesre e 51
RETEIENCE LEVEIS. ...ttt bbbt bbbttt b e bbbt et 55
Acquiring Raw Data from the Signal Analyzer Measurementcccooveiririneneneieee e 57
Controlling Input and OULPUL SWITCNEISc.veiiiiiiiiiite e 58
USINg the WAVEREAAET DLL.........coviiiiiiiiiiie e 59
Directly Accessing .NET Methods and PrOPEITIESc.civieeiiieeiiiiie ettt ste ettt ns 61
(O] Tod 111 (o] o [OOSR PRSP 64

How to Use This Document

This document is a guide to getting started with the APx LabVIEW .NET Driver. In addition to
providing background information and an overview of the driver, it contains a tutorial that will
guide you through the process of creating a series of LabVIEW programs to control and interact
with an APx500 Series audio analyzer. The tutorial begins with the simplest possible APx
LabVIEW program and gradually increases in complexity, introducing and explaining features of
the driver along the way.

The tutorial section assumes that you have a basic level of proficiency in LabVIEW. If you are
new to LabVIEW, you should work through the Getting Started with LabVIEW manual that
matches the version of LabVIEW that you are using. This document also assumes that you have
a basic level of proficiency in using the APx500 measurement software.

Note that due to continual product improvement, figures in this document taken from earlier
versions of the software and driver may not exactly match the version that you are using.

Background

The APx500 Series of audio analyzers are controlled via the APx500 measurement software. The
APXx500 software has many test automation features built in, including customizable user
prompts and the ability to call external applications. For those who want to go beyond the
automation features built into the APx500 measurement software, a full-featured Application
Programming Interface (API) is available. The API is built on the Microsoft .NET platform,
allowing custom APx programs to be developed in any .NET capable language.

National Instruments’ LabVIEW is a graphical programming language that uses block diagrams
instead of text-based code to create applications. LabVIEW is a popular development platform in
test automation circles because it has an extensive library of instrument drivers and a broad test
development feature set. Because LabVIEW supports .NET connectivity, it is one of the many

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 2 of 64

programming languages that can be used to develop custom APx500 applications using the APx
.NET-based API. For more information on LabVIEW, visit http://www.ni.com/labview.

Audio Precision provides code examples on our website that demonstrate how to use VB.NET
and C#, to interact with the APx API. Examples using LabVIEW are installed with the APx
LabVIEW .NET Driver and are available from the Examples sub-palette.

Every feature available in the APx API can be accessed from LabVIEW, using basic low level
calls to the .NET properties and methods available in the API. However, due to the graphical
nature of LabVIEW and the way in which it interfaces with .NET objects, APx LabVIEW
programs developed using only these low level .NET calls would be considered “awkward” by
many programmers accustomed to using LabVIEW.

The APx LabVIEW .NET Driver is a collection of Virtual Instruments (V1s) intended to
eliminate this awkwardness, and to enhance the development of APx programs using LabVIEW.
It provides LabVIEW users the ability to access most of the functionality available in the API
using higher level LabVIEW-typical subVIs, with fewer program steps. As a result, APx
LabVIEW applications can be developed much more quickly and efficiently, with cleaner, more
concise LabVIEW code.

LabVIEW Version Requirements

The APx LabVIEW .NET Driver was developed in LabVIEW version 2012 for users having
LabVIEW 2012 or later.

Driver Version Information

The APx LabVIEW .NET Driver is version-specific to the APx500 measurement software. For
example, the APx LabVIEW .NET Driver 4.5 must be used with APx500 4.5. The revision
number of the driver (4.5.x) is independent of APx500 and indicates a driver update.

What’s New in Version 4.5?
Features added to the APx LabVVIEW .NET Driver in version 4.5 include:

e Updated Bluetooth Configuration and Action/Status VIs to support the new Bluetooth Duo
module.
e Added new VIs to configure the DUT Delay measurement settings in Sequence mode.

e Miscellaneous improvements and fixes.

Upgrading Existing LabVIEW Projects and Vis

Changes from 4.4. to 4.5

e The Bluetooth Configuration Parameters typedef cluster control used in the VIs that get and
set Bluetooth configuration settings has been extensively modified to support the new
Bluetooth features added in APx 4.5.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 3 of 64

http://www.ni.com/labview

Changes from 4.3 to 4.4:

The following Vs are no longer polymorphic and the same VI will now work for either
Sequence and Bench mode. If you are using the Sequence or Bench-specific versions, which
have been removed, LabVIEW will prompt for a replacement. For example, when LabVIEW
cannot find APx500 Sequence — Auto Set Generator Level or APx500 Bench — Auto Set
Generator Level when loading a project, browse and select APx500 — Auto Set Generator
Level to have LabVIEW automatically fix the error.

= APx500 Auto Set Generator Level

APX500 Utility-Get 10 Connector Details

APx500 Utility-Get Output Connector Details

APx500 Utility-Get Input Connector Details

APx500 Config-SigPath GetSet Output Connector Type

APx500 Config-SigPath GetSet Input Connector Type

APx500 Config-SigPath GetSet Filters Analog

APx500 Config-SigPath GetSet Filters Digital

RV 2

U

Changes from 4.2 to 4.3:

The settings control Type Defs for the Measurement Recorder, Signal Acquisition, and
Signal Analyzer measurements have changed slightly due to the addition of the Loop
Waveform checkbox. If you are using a control or constant that is not linked to the
corresponding Type Def, you will need to update it manually.

Some VIs had input and output terminals with the same name. These terminal names are now
appended with “in” and “out”. When using these VIs in TestStand, it may be necessary to
refresh each step to update the names.

Changes from 4.1 to 4.2:

1. New install location:

The APx LabVIEW Driver is now installed at instr.1ib\Audio Precision APx .NET
instead of at instr.1lib\Audio Precision\APx Driver. In order to resolve conflicts
due to the new location, you will need to do the following when opening a VI saved for
an earlier version of the APx .NET Driver:

a. LabVIEW will search and find the driver VIs in the new locations and display a
prompt for you to accept each one. Accept the changes until the VI finishes
opening.

b. Save the project and all VIs, and then go to Project > Resolve Conflicts to resolve
any remaining location conflicts.

c. To ensure that no conflicts are remaining in memory, save the project and all its
files again, and then close and reopen LabVIEW.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 4 of 64

d. Before reopening the project, it is a good idea to do a Mass Compile on the entire
project directory (Tools > Advanced > Mass Compile) to make sure that
references in all VIs, including those that don’t currently have callers, are
properly updated.

2. Result types are now static objects (the MeasurementResultType enum is no longer used).

The .NET invoke nodes APx500.AddResult and APx500.DeleteResult will be broken and
will show in the VI error list. To resolve the errors, do the following:

=) oy

AddResult —

v signalPathlndex

rmeasurementindex
ILE‘JEWEFFEEILIEH cy vI— ' resultType

Figure 1. The AddResult invoke node from a previous project is broken in 4.2.

a. Right click on the node and choose “Select Method”. Then reselect the desired
method (AddResult or DeleteResult). This will fix the node but break the wire
from the enum.

AddResult "—
v signalPathlndex
rmeasurementindex
ILE“.I'EWSFFEEILIEH cy ‘PHP resultType

Figure 2. Reselecting the method fixes the invoke node but then breaks the wire from the
MeasurementResultType enum.

b. Note the enum value (in this case “LevelVsFrequency”). Delete the enum and the
broken wire.

c. Right-click on the terminal of resultType, select “Create property for ...”, and
then select the static object of the desired result type. In this case, it will be “(S)
LevelVsFrequency”. Then wire it to resultType. Note that because this is a static
property, it can be used without creating a class object. Therefore, the incoming
and outgoing object reference terminals will remain disconnected. This will not
cause a LabVIEW error.

Sk APKSOD Rl
AddResult "
v signalPathIndex
rmeasurementindex
ﬁ == MMeasu rem’antResuItT}rp e ﬂ ' resultType
LevelVsFrequency PJ— ?

Figure 3. A MeasurementResultType static object is created to replace the enum.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 5 of 64

d. Rerun the error cluster wire to include the new static object.

[resumnaex |
é E ;g'"} AP:S00 ﬂn

AddResult H—

v signalPathlndex

rrneasurementlndex
B =2 MeasurementResultType § : -
£ | |—r resultType

LevelVsFrequency b

Figure 4. The error cluster is reconnected to include the static object.

Changes from 3.4to 4.1:

If your project was saved using APx Driver 3.4.3 or earlier, you will need to note the following
changes as well as those described in the preceding section.

e Controls and indicators have been reorganized into more logical front panel clusters.
e The Level result has been renamed RMS Level.

e Reference Levels is no longer a separate “measurement” but is incorporated into Signal
Path Setup.

e Input bandwidth and filter controls have changed in APx500 v4.0 and v4.1. In the driver,
these controls are no longer in the Input Configuration VIs and have been moved to
separate Analog and Digital filter VIs.

e There are some changes to the underlying APx500 API. The most significant is that
Generator.AnalogLevels and Generator.DigitalLevels is now just Generator.Levels. If
you have any custom VIs you’ve created that use these properties they will need to be
updated. For more details on API changes, refer to the APx API Browser.

e Because the driver now supports multiple channels for generator level, when writing a
single value you will need to convert it to an array. The figure below shows how to create
an array for setting the Frequency Response measurement analog generator level:

APS00 Ctl - Generator

Level and Offset
Subpanel.ctl 5 . APxSQG Ctl - FreqResp
I Cenfig Generator.ctl

Level

Bundle Build Bundle
By Name Array By Name

Figure 5. Writing a single value for analog generator level to the Frequency Response generator
settings VI.

e Because the driver now supports multiple channels for generator level, when reading a
single value you will need to convert it from an array. The figure below shows how to
extract the first value from an array when reading the Frequency Response measurement
analog generator level:

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 6 of 64

Level

o= ==| | Levels. Analog fmmet | | bz
Unbundle
By Mame m

Figure 6. Reading a single value (channel 1) for analog generator level from the Frequency Response
generator settings VI.

e When a compiled LabVIEW application is run on a Windows 8 or 8.1 PC, it may not be
able to locate the APx API DLL. To resolve this issue, copy the APx API ({Program
Files}\Audio Precision\APx500 4.5\API\AudioPrecision.API.dll) into the same directory
as the application’s executable.

Features
The APx LabVIEW .NET Driver was designed to follow the National Instruments LabVIEW

Plug & Play Instrument Driver standard. Driver features include:
e Works with all audio analyzers in the APx500 Series.

e Supports configuration, running, and data handling of virtually all measurements in the
APx500 measurement collection.

e Measurements can either be run individually or as part of a sequence defined in a project file.

e The ability to control any non-advanced! measurement setting.

Limitations
There are some limitations to the driver, including:

e Generally, advanced measurement configuration settings are not supported in the driver?.

e Digital Serial Input and Output configuration is not supported. However, opening preset
configuration files is.

Installation

If you have an earlier version of the APx LabVIEW .NET Driver installed, it is recommended
that you uninstall it before installing this version. The driver can be uninstalled using the Add or
Remove Programs feature in the Windows Control Panel, as shown in Figure 7.

! Note: Access to more advanced API features that are not implemented in the driver is still available using basic
low-level .NET API calls. See page 57.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 7 of 64

B Add or Remove Programs slwiolr| 10|
Currently installed programs: [~ show updates Sort by IName vl

-

Add Mew Remowve

Programs

%) audio Precision ATS 1,60 Size 51.52MB

%) audio Precision ATS 1,60 Addins Size 51.52MB

-

Figure 7. Uninstalling the previous version.

To install the APx LabVIEW .NET Driver, download it from ap.com, unzip it, and run setup.exe.
By default, the installer will install the driver in the instr.lib sub folder of the LabVIEW
installation on the computer, as shown below. This default location should not be changed.
Otherwise, the driver’s menu palette will not be available in LabVIEW.

L1/ Audio Precision APx500 LabVIEW Driver v2.6 l _ = e S

Destination Directory
Select the primary installation directon.

Al zoftware will be inztalled in the follawing location(z]. Ta install zoftware inta a
different location(s). click the Browse button and select another directory.

Directory for Audio Precizion AP«500 LabV IE\W Diriver w2.6
C:\Program Files'\National Instruments*LabVIEW 200%instr lib*Audio Prec:isi0|| [Erowse...

[<< Back][Mext »»] [Cancel

Figure 8. The APx LabVIEW .NET Driver installer.

Running LabVIEW in Administrator Mode

Normally it should not be necessary to run LabVIEW as an administrator when using this driver.
However, if UAC (User Account Control) is enabled in Windows, in some cases it may be
necessary to run as an administrator when calling an application that needs elevated permissions.
One such example is the WaveReader VIs (see APx500 Example — WaveReader.vi), where it is
necessary to run LabVIEW as administrator when Measurement Recorder is saving a wave file
to the user documents directory.

Organization of the Driver

After installation, the driver collection will be contained in a folder named Audio Precision\APx
Driver within the instr.lib sub-folder of the directory where LabVIEW is installed. For LabVIEW
version 2012, the folder name is C:\Program Files\National Instruments\LabVIEW
2012\instr.lib\Audio Precision APx .NET.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 8 of 64

The driver includes a special menu palette, accessible from the LabVIEW functions palette on
the block diagram, under Instrument I/O - Instrument Driver - APx500, as shown in Figure 9.

41 Functions
Programming

k=

Structures

i

ra|
3
-

.

i 3 E

EIEE |V 2

S v & vl 2
E]

(@)
&

g

[=[=]
[e==]
=]

3
Ar

]
| &
- =

&)

m
o
=]
m
o
=

@

Q Search+
3

E »

o

Cluster, Clas...
C

@ i

Application ...
B

Synchronizat... Graphics & 5... Report Gener...

Instrument /O
Mathermatics
Connectivity
Favorites

User Libraries
Select a VI...

3

¥ 41 Instrument /O
) Instrument Drivers

¥ RIUERS 3 m-" @
¥ =B 1 Instrument Drivers
Instr Drivers
[Visal AGIAA01p] ¥
&

Diriver
[b

5 11 APx500
Agilent 34401 APS00

»
41 Tree N ;»:43' Canfig
HITIALIZE [u]

VITree Open Close Configure
b [EFE] [BFE| b
A ction? Data Uility Examplc
Statuz

Action/Status Data Utility Examples

Figure 9. The APx LabVIEW .NET Driver menu palette

On the main menu palette, there is a link to a VI named APx500 VI Tree.vi. This is a special
type of VI provided with LabVIEW drivers to help document the VIs in the driver collection.
When opened, the front panel of this VI appears as shown in Figure 10. The VI Tree is not meant
to be executable, as evidenced by the broken run arrow on the toolbar below the View menu
item. The block diagram for this VI shows every high level V1 in the driver (Figure 11).

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 9 of 64

I3 APx300 VI Treewi Front Panel on APx500.lvpraj/My Comp! I

le Edit View Project Operate Tools Window H

Ip 500
@@ ||Ell@ | 15pt Application Fori | Q |?FT_:|

Figure 10. The VI Tree front panel

p
L & of | 15pt Application Font]

SIGNAL PATH TEASUREMENT
Drganized inta columns Organized into columns
Input - Output A1l - Generstor - Acquisition & Analysis
: Initialize Generator/Analyzer
= P
=
[Bandpass Frequency Sweep Jitter Level Sweep

Action/Status Measurements

=
| [Enalog Unbalanced

oudspeaker Production Test

I

=

andpass Level

E

[Bandpass Level Sweep

I

=

Maximum Qutput

[

ompare Encoded Bitstream

I

i

I

ontinuous Sweep

2| o] Bl tneed
=

I

rosstalk Custom

=

n

Utility

i
i

i

oise Recorder (RMS)

i

=

g

. = DC Level (DCX) o=+ [FESQ (Averaged]
DC Level Sweep

lZ= i g
= | [POLQA (Averaged)

Digital Error Rate|

=5
L1

Examples d

=
il

SR Frequency Sweep
egulated Frequency Sweep

i

DIM Level Sweep

=

Dynamic Range AESLT

esistance (DCX)
Close

i
A

i

i

IMD Freq Sweep

Figure 11. The VI Tree block diagram

=

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 10 of 64

Consistent with the National Instruments guidelines for an instrument driver, the VIs in the in the
APx500 VI Tree (Figure 11) are organized into categories including Initialize, Configure,
Action/Status, Data, Examples, Close, and Bench. These same categories are visible in the
driver’s menu palette (Figure 9).

Driver VIs may be loaded from the driver’s menu palette or copied from the VI Tree.
The addition of Bench mode introduces a new icon color coding scheme as follows:

Table 1. VI icon color code

Color band on VI icon APx500 mode:

Blue D Sequence mode

Blue with Green in Polymorphic, with Sequence mode as the default. To switch to Bench
mode, right click the VI and choose “Select Type > Bench.” When
corner . .
switched to Bench mode, the color will change to Green.
SO0
Half Blue, half Green Work as-is in either Sequence or Bench mode.
AP 500
Green Bench mode

Use a LabVIEW Project and Corresponding .config File

We have found that when working with .NET assemblies such as the APx500 API, the use of a
LabVIEW project is critical.

The LabVIEW Driver installer puts a LabVIEW project named “APx500 Examples
Project.lvproj” in the driver folder. There is also a shortcut to this project placed in the Start
Menu. The Examples project contains a number of example VIs to help you get started using the
APX driver.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 11 of 64

{3 project Explorer - APxS00 Examples Project.lvproj = | B |t

File Edit View Project Operate Tools Window Help
65 W el | O Q| gk E- &]

Iterms | Files
-+ k.. Project: APx500 Examples Project lvproj

£ B My Computer

B [Examples
= f_J WaveReaderSupport

?:J' subVls
P LQ, APx500 Start Measurement Recorder WaveReaderwi
I_Qv APx500 Get Measurement Recorder WaveReader Data.vi
% WaveReader.dll
: .a WaveReaderExample.approjx

APx500 Example -
APyS00 Example -
APx500 Example -

Aux Control 10w
Configure Digital Unbalanced Output.vi
GetSet Reference Levels.vi

Reference Levels Auto Gen Levelvi

Run Project Sequencewi

Run Sequence & Save PDF Report.vi

Set Qutput Connector Typewvi

Simple Data Results.vi

Simple Metadata Recorder Measurement.vi

]

2

e,

] APxS00 Example -
] APxS00 Example -
wl APxS00 Example -
] APxS00 Example -
] APxS00 Example -
wl APxS00 Example -
e,
]
Q.

- Simple Meter Measurement.vi
- Simple Signal Path Setting.vi

- Simple Sweep Measurement.vi
- User Interface.vi

B ‘:q‘ Dependencies
4» Build Specifications

. 4

Figure 12

A configuration file with the same name as your LabVIEW project must be included in the folder
that the LabVIEW project resides in. Using a project file and accompanying .config file like this
when working with the APx Driver VIs will prevent errors caused by cross-linking and by
LabVIEW referencing the wrong version of the APx API. If a project file and .config file are not
used, in some cases the LabVIEW driver VIs may not work.

The Examples project shown in Figure 12 contains a configuration file named “APx500
Examples Project.lvproj.config”. You can use this file in your own LabVIEW project by simply
renaming it. The config file must have the same name as your LabVIEW project, followed by
“.config”. For example, if you create a new LabVIEW project named MyAPx500Project.lvproj,
make a copy of the .config file above in the same folder as the project and rename it to
MyAPx500Project.lvproj.config.

When updating a project for a new version of APx500, be sure to change the version references
in the .config file accordingly. The example below shows the proper reference to the APx API
version 4.5:

<bindingRedirect oldVersion="2.1.0.0-4.4.0.0" newVersion="4.5.0.0" />

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 12 of 64

The APx500 Open VI

The first VI in the collection is the APx500 Open.vi (Figure 13). This VI Opens the APx500
measurement software (if it is not already open), and creates a .NET reference to the APx API.
This VI must be run before any of the other VIs in the driver collection, so that it can pass a
reference to the API to any subVIs further down the line. Aside from the Example Vs, this is the
only VI in the driver collection that can be run on its own as a Top Level VI (i.e., not as a
subVl).

Note: If the APx500 application is already open, the APx500 Open VI simply creates a .NET
reference to the API. It does not open multiple instances of the APx500 application.

The APx500 Open VI is polymorphic, allowing you to open APx500 in either Sequence or
Bench mode. The default is Sequence mode. To open in Bench mode, add the VI to your block
diagram, right click on it, and choose “Select Type > Bench.”

LabVIEW s context help can be turned on or off by selecting Show Context Help from the Help

menu, or by pressing Ctrl-H. Figure 13 shows the wiring diagram part of the context help for the
APx500 Open.vi.

AP=500 Open.vi

bl APx500 Reference
Wisible (T} 1 L E=version Info
Error in {no error) HITL oo grpor ik

Figure 13

By default, the APx500 Open VI makes the APx500 application visible. If you prefer to use the
API with the APx500 Application invisible, you can simply wire a Boolean False to the Visible
input of the APx500 Open VI.

When the APx500 Open V1 is added to a diagram, it will refer to the version of the APx
LabVIEW .NET Driver that is currently installed. When you upgrade APx500 and open an
existing project, LabVIEW will prompt you that the APx500 API version has been changed. You
can check the API version by locating the APx500 constructor in the block diagram of the APx
Open VI.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 13 of 64

Window Help

File Edit View Project Operate Tools

= - — B
@[n][@][25] [walPos [15ptDistog Font [~ J[% [7m~] [][=al] ‘ :
IAPx500 Reference]
43 Select .NET Constructor [= |
el
Assembly = o APSES <
AudioPrecision.API(2.6.0.0) -—Browse... =
Construct the APX object and| B]
Objects
errarinnoeron) . :na:ogﬁalznlcedS:lljrceI?ﬁrped.anc; A,} lerror out|
* AnalogUnbalancedInputTermination = =
| B AP:S00 7 3 = APS00 ﬁ]: 3 = APx500 }] * AnalogUnbalancedSourcelmpedance i ﬁ
3 P Visible | Version e * APError i
isible (T) ! IsDemoModeM-- ¢ APEvents %Dﬁwaf&v&(ﬂon
oy — | i + APException AdjustmentDate ersion Infol
: finsloginputChannelCourt
H + ApxS00PortNumbers InstrumentID I..,La... =
H + APxOption 2 HwModel =
i Demo Mode?
b Constructors
i ARE0G0 a Version Info Cluster
[oK] [Cancel] [Help]
“ | »
X =2
Figure 14

Getting Started—A First Simple APx LabVIEW VI

To create a simple APx LabVIEW program, open a New VI, and place a copy of the APx500
Open.vi on the block diagram. Next, right-click on the Version Info output tab of the VI and
select Create — Indicator, to create a Version Info indicator. Finally, for good measure, add a
Simple Error Handler VI to the diagram and connect it to the error out indicator of the APx500
Open VI. When you are finished, your block diagram should be similar to Figure 15.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 14 of 64

! untitled 1 Block Diagram on My Co o] ‘ersion Info

File Edit %ew Project Cperate Tools Mindow Help J{ HyMadeal St [t
22 @[n][][25] [wal@]ot 130t el = IF'.F‘xSEE]
;I InstrurmentIC

el

SaoftwareYersian

ersion Info I

AF500 AdjustmentDate

e I
MaxdnalogInputChannelCounk
II:I

My Computer ll I L4 d

Figure 15. Block diagram of a first simple VI to control an APx analyzer,
and the Version Info cluster on the front panel

This simple VI is now ready to run. Note that if the PC is not properly connected to an APx500
analyzer that is powered on, the APx500 measurement software can be run in demo mode. In
fact, if the APx application is loaded from the API (e.g., using LabVIEW) rather than from
Windows, the software is automatically loaded in demo mode when an instrument is not
connected. Demo mode simulates almost all of the functionality of the APx software, but returns
random data. Fortunately, all of the API calls function normally in demo mode, and therefore,
LabVIEW Vs to control APx analyzers can be mostly developed without an APx analyzer being
connected.

To run this simple VI, click the white Run arrow on the VI’s front panel. After several seconds
(the amount of time depends on the PC speed and available memory resources), the APx
application will load, and the Version Info will be displayed in the indicator on the front panel?.
As explained in the context help, if the APx application is running in demo mode, some of the
indicators in the Version Info cluster return blank values.

Using the APx500 Close VI

The APx500 Close.vi closes the APx500 measurement software and closes the .NET reference to
the APx API. With traditional LabVIEW instrument drivers, it is considered good practice to
close any driver references when a V1 is finished its task. Figure 16 shows the block diagram of
the simple VI from Figure 15 with the Close VI added.

2 Note: An exception to this occurs the first time an APx analyzer is used with a new version of the APx500
application. In this situation, the application pauses to update the instrument’s firmware.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 15 of 64

File Edit Wew Project Operate Tools ‘Window Help .,.H
o

D [@] @[n][@][2] [bal@P] o [130t System Font =

N E

My Compuker 4| |»

Figure 16. APx500 Close VI added to the she simple VI.

The APx LabVIEW .NET Driver is not a traditional LabVIEW instrument driver in the sense
that running the APx500 Open VI without running the Close VI does not open an additional
instance of the APx500 measurement software. Therefore, there is no advantage to adding the
APx500 Close VI to every VI. In fact, closing the application every time a VI finishes running
can be a disadvantage, because of the time it takes to re-open the application. We do not
recommend adding the APx500 Close VI to every top level VI.

The only potential disadvantage to the above strategy is if the APx500 application is running
with its Ul invisible when you are finished using it with LabVIEW. In this case, if the APx500
Close VI is not used somewhere in the LabVIEW program, the APx500 application will remain
in memory without the user knowing it, because the Ul window is invisible. If you are concerned
about this you should add the APx500 Close VI to your APx VIs. However, in our opinion, the
inconvenience of having to re-open the APx500 application every time a VI is run far outweighs
the disadvantage of the application occasionally being left running and invisible.

Running a Measurement in the APx Project

Next, we will look at running an APx measurement from LabVIEW. Begin by saving the simple
VI created above. In the examples shown below, the VI has been saved with the name My APx
Program.vi. Follow the steps below to create a simple LabVIEW program to run a Level and
Gain measurement on the APx analyzer.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 16 of 64

B! My APx Program-1.vi Block Diagram on My Comp O] x|
File Edit Mjew Project Operate Tools ‘Window Help '_Hi
==

'ﬂ@ﬂ QIE“"U'E’*D’ | 13pk Syskem Font =
1. Delete all sub-VIs from
the block diagram, Ttz

except the APx500 Open

VI and the Simple Error
Handler

[Computer | P

B! My APx Program.vi Block Diagram on My Compute =10l x|
File Edit Mjew Project Operate Tools Sindow Help .,.H
=

@ @/ bo & of [13pt System Font =

2. Add the APx500 Utility —
Strings to Signal Path & |G Uilty === {tleure |
Measurement VI and the i FEPEM
APx500 Perform
Measurement VI to the
diagram and connect
them as shown.

4]

My Camputer 1| | _*Ij_:é

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 17 of 64

B! My APX Program.¥i Block Diagram on My Compuker ®

3. Right-click on the File Edit Mjew Project Operate Tools ‘Window Help @_

appropriate inputs to the &0 m i i3 | o | 13pk System Font 1
chivopriae Inputs][9] [25] [bal 2P| d
Signal Path &

Measurement VI, and
Signal Path and

M?asurement name IMeasurement Cu:umpletel
strings.

Measurement Complete

output of the Perform
Measurement VI and

create controls for the
4. Right-click on the 2 !
create an indicator.

)G ity

-

My Computer 4 | | v[
B My APx Program.¥i Front Panel on My Computer = |I:I|£|

File Edit Wew Project Operate Tools Window Help &_

Mﬁ|@ ||I 13pt Application Font |vl ;mvl .’j:vl i+l

5. Enter the names “Signal
Path1” and “Level and

i l
Gain” in the appropriate Signal Path |

string controls on the I
front panel of the V1, as

shown.

My Camputer n é

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 18 of 64

= M Project
=i Siagnal Path1
nal Path Setup

6. Open the APx500
application (if it is not
already open). If it is

open, start a new Project - Signal Path Diagnastics
with the Default <O Reference Le.vels
template. This will : 00 Level and Gain
ensure that a Signal Path <0 THD+M

named “Signal Path1” e[Frequency Respanse
exists in the Project and #-[]) Signal to Moise Ratio
that a measurement Report checkbox i [J Crosstalk

named “Level and Gain” D,j Intercharingl Phase
exists within that Signal B Add Measurement. ..
Path. It will also ensure ~h3:§{>4 Add Signal Path...

that the Report checkbox ! Report

ischecked. i Oz Pass/Fail Message

= [Project
=-[FHA Signal Patki

= = Signal Path Setup

7. Run the VI by clicking - Signal Path Diagnostics
the Run arrow. This will w00 Reference Levels
cause the APx500 =@ Level and Gain
application to complete a B RMS Level

Level and Gain
measurement and create
a report. Once complete,
the RMS Level result of
the Level and Gain
measurement will be
highlighted in the APx

Application. On the front -0 Signal to Noise Ratio
panel of the VI, the -] Crosstalk
Measurement Complete H-O . Interchannel Phaze
LED should nowbe = . #3)| Add Measurement
green instead of grey. i %4/ Add Signal Path...

----- - Report

----- O=: Pass/Fail Message

2 | D]

The above simple program illustrates running an APx measurement from LabVIEW. The
Perform Measurement VI uses the APx Sequencer to run the measurement. This is equivalent to
checking the measurement’s checkbox in the APx Navigator, and then right-clicking on the
measurement and selecting Run Measurement (Figure 17). Running the measurement via the
Sequencer is preferred over simply turning on the generator and reading the instantaneous data,
because the Sequencer method returns settled readings.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 19 of 64

= B Project
- 4 Signal Pathl

O Signal Path Diagnostic:
O Reference Levels

1 A e R

k| Bun Measuremen'\

¥ Delete Measuremetit Del

% Copy Chl+C
Pazte Chrl+4f

Check A1
B[Add Mg Uncheck Al
----- i) Add Signal
..... Fepart Fenames
----- Oz PassiFs 5

Edit Promptz and Properties. ..

Help...

Figure 17

Note that specifying the Signal Path and measurement name is a critical step. This tells the APx
API precisely which measurement in APx that our LabVIEW program wants to interact with. It
is critical that these two items are specified correctly, and that they exist in the project.
Otherwise, the API will generate an error. To see this in action, change the string in the Signal
Path control on the LabVIEW front panel from “Signal Path1” to “Signal Path2”, and run the VI
again. This time it will generate the error message shown in Figure 18.

x|

AudioPrecision. APLAP=500.ShowMeasurement
of ObjectId handle: 0xA481184 for obj
DxEBBEA3[AudioPrecision.APLAPX500] in
domain [APx500.lvproj for Run] and thread
6260,
{System.Reflection.TargetInvocationException:
Exception has been thrown by the target of an
invocation.

Inner Exception:
AudioPrecision.APLAPException: The specified
item does not exist in the collection.

) in AP=500 Utility-Get I0 Connector Details.vi-
=APx500 Utility-Get Input Channel Labels. vi-
=APx500 - Perform Measurement.vi- =My APx
Program.vi

0 Error 1172 occurred at Error calling method

Possible reason{s):

Lab¥IEWY: A MET exception occurred,

Stop |

Figure 18

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 20 of 64

The same error message is generated if the measurement name specified in the Measurement
string control does not match a measurement in the specified Signal Path. Therefore, you must
ensure that the specified Signal Path name exists within the APx project, and that the specified
measurement name exists within that Signal Path.

Error Handling

All of the error handling in the APx LabVIEW .NET Driver takes place in the APx API. The
LabVIEW Vs in the driver collection merely pass the LabVIEW error cluster down the line.
Every VI in the driver collection has an error in control and an error out indicator. To follow
recommended programming best practice, you should wire the error in and error out terminals of
all driver Vs, and add an error handler V1 to your top level VI.

Unfortunately, LabVIEW does not do a very good job of handling .NET exceptions. As
described in the LabVIEW Help system and on the NI Support site, any exception thrown when
calling a .NET object or property is converted into LabVIEW Error 1172. LabVIEW does add
more error information to the error message, but if you use LabVIEW’s built-in Simple Error
Handler VI, the error messages returned are rather cryptic and difficult to understand (see, for
example, the error message in Figure 18). To overcome this problem, an interface called
APx.LastException is part of the APx500 API. This function keeps track of the last .NET
exception thrown by the APx500 application, giving LabVIEW access to the same managed
error handling features available in .NET.

The VI named APx500 Utility-APx Simple Error Handler uses the APx.LastException interface
to trap LabVIEW’s generic 1172 errors and to return instead error messages that are much more
meaningful and easy to read. The function of this VI is described in Figure 19. To compare error
messages returned by this VI to those returned by LabVIEW, compare Figure 18 to Figure 20.

APx500 Utility-APx Simple Error Handler.vi

APXEDD RE.FerEHCE in
Clear Error on Exit -
T error out
Error in ==

APx500 Reference out

This AP:500 Utility VI will display an error dialog and if the boolean
Clear Error on Exit is True, will clear the error afterward.

If the incoming error is LabVIEW's generic #1172 .Met error, this VI
creates a customn error message by extracting the message and APx

error number using the APx.LastException interface in the APx APL
This VT adds 7000 to the APx error number,

If error 1172 is not the error code, LabVIEW's Simple Error Handler VT is
used instead.

Figure 19

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 21 of 64

http://digital.ni.com/public.nsf/allkb/B15CE9F2715434C386256D3500601878

3 . =

a Error 7073 occurred at Untitled 1

Possible reason(s):

Mo measuremnent with the specified name exists in the
collection,

Figure 20

The Signal Path & Measurement Cluster

Due to the importance of specifying Signal Paths and measurement names correctly, the APx
LabVIEW .NET Driver uses a special control named Signal Path & Measurement. In Figure 21,
you can see that this control is passed into and out of the Perform Measurement V1. If you
browse through the Vs in the driver collection, you will notice that Signal Path & Measurement
is an input or output for many of the VIs that make up the driver.

"
APx500 - Perform Measurement.vi

APx500 Reference
Signal Path & Measurement =
Errar in (no error) ==

APx500 Reference ook

, b Measurement Resulks

== Signal Path & Measurement
‘ error out

E Measurerment CDI‘I‘IFI'EtE

Figure 21

To take a closer look at this special control, add a Signal Path & Measurement indicator to the
My APx Program.vi after the Strings to Signal Path & Measurement VI as shown in Figure 22
(right-click on the wire and select Create — Indicator). Next, change the Signal Path string back
to “Signal Path1” and run the VI. The resulting front panel is shown in Figure 12 (controls have
been rearranged for better visibility).

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 22 of 64

B! My APx Program.¥i Block Diagram on My Computer ®
File Edit Wew Project Operate Tools ‘Window Help @_
(9] al1s [5mnren |~
i
HIT1 - .
Measurement Cu:umpletel
- t H
gasurement] Fignal Path & Measurement]
-
My Compuker 4 | | LA P
Figure 22

Er| My AP Program.vi Front Panel on My Computer *

File Edit Mew Project Operate Tools Window Help &_

M@ i@ ||l 13pt Application Fork |vl :mvl Tﬁ:vl ﬁvl &;vl

Signal Pathi i

Signal Path1
evelandGan |
v

(o

Signal Path Setup v

[y Computer] 7

Figure 23. An indicator for the Signal Path & Measurement cluster added to the V1.

As shown in Figure 23, the Signal Path & Measurement indicator now contains an array of
measurements. If you change the Measurements array index, you will see that each element in
the array corresponds to a measurement in Signal Pathl of the currently active APx project. The
array also contains a check box denoting whether the measurement is checked, and a
Measurement Type (enumerated type) indicator.

One important feature of the Signal Path & Measurement cluster is not immediately obvious:
The Selected Measurement Index control (shown below the Path Name) in the cluster, is the
control used to specify the measurement within the Signal Path. This index is zero-based. In the
example shown in Figure 23, the Selected Measurement Index is equal to 3. Note that this

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 23 of 64

corresponds to the position of the measurement in the Signal Path, with index 0 being the first
measurement (Signal Path Setup), index 1 = Signal Path Diagnostics, index 2 = Reference
Levels, and index 3 = Level & Gain.

There are many utility VIs in the driver collection for working with Signal Paths and
measurements. For example, the Get Signal Paths VI (Figure 24) returns an array of Signal Path
& Measurement clusters with one element for every Signal Path in the currently loaded APx
project. This structure provides a way of addressing every measurement in a project. This utility
will be useful when you create more advanced Vs as will be seen later in the tutorial.

APx500 Utility-Get Signal Paths.vi

APx500 Reference ouk

Signal Path & Measurement A, ..
B error ok

APxr500 Reference in

Lixilit
Gk ¥

Error in (no errar) EigFath

Signal Path 8 Measurement Array

o

Pakh Mare
|5igna| Pathi

Selected measurement Index

IIII |+ Path Enabled

Measurements

#
o1 e Checked

ISignaI Path Setup v

MeasurernentType

ISignaIF‘athSetup 0

Figure 24

Changing APx Measurement Settings with the Driver Vls

The simple My APx Program VI above performs a measurement with the settings as configured
in the APx project. But most users will want to configure the measurement from LabVIEW — for
example, you may want to vary the generator level or frequency. So next we will look at using
the driver VIs to change the measurement configuration.

In the My APx Program VI, delete the Signal Path & Measurement indicator. Next, add the VI
named APx500 Config-Level & Gain GetSet All (available from the Configuration sub-palette, as
shown in Figure 25) to the block diagram. Insert this VI between the Utility — Strings to Signal
Path & Measurement VI and the Perform Measurement V1. Be sure to connect the input and
output wires (the .NET reference, the Signal Path & Measurement and the error cluster). Next,
add a Boolean True constant to the diagram and wire it to the Set connector on the VI. Finally,
right-click on the Level & Gain Config input terminal of the VI just added, and select Create —
Control, to create a Level & Gain Config control. The block diagram should now be similar to
Figure 26.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 24 of 64

o—IHILevel & Gain

APx500 Config-Level & Gain GekSet All,wi

BPx500 Canfi,., &PxS00 Canfi,.. APxS00 Confi,..

Figure 25
File Edit WYiew Project Operate Tools MWindow Help -'-H
||:[> |{§}| @IEI |L,ulla’|uj} | 13pt Application Fant | = I| ;mvi o |
......... il
g
HITLA
Measurernent Cn:nmpletel
=) =
: &
TE
=
: L evel & Gain Config] |
-
Kl | v[
Figure 26

Now look at the Level & Gain Config control on the front panel of the VI. Figure 27 shows the
front panel (you may need to rearrange controls and indicators to make your front panel match
Figure 27). This control is a LabVIEW cluster control, that contains two other cluster controls -
one at the top called Signal Generator Settings (L&G), and another below it called Signal
AcgAnalysis Settings (L&G).

Now look at the APx Ul. With the Level and Gain measurement highlighted in the Navigator,
you may notice the similarity between the LabVIEW cluster controls and the APx controls used
to configure the measurement, located in the grey panel to the right of the Navigator tree (Figure
28). The LabVIEW controls have been designed to have a one-to-one correspondence with the
APX controls. This is obvious in the case of the Signal Acquisition and Analysis control, because
there is only one control in this case (Low-pass Filter), and both LabVIEW and APx have the
same control. But what about the Signal Generation Controls? Why are there more controls in
the LabVIEW cluster than there are in APx? In fact, the APx Ul has the same number of controls
as the LabVIEW cluster, but they are not all visible at the same time. The APx500 application
hides any controls that are not relevant in a given measurement context.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 25 of 64

B My AP Program.¥i Front Panel

o1& o] [prsreenton [t [

Signal Pathil
Level and Gain 1.0000k | =

100rm
-20,00 -
v v [[o [[[

£

Figure 27

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 26 of 64

[100000kHz:] [1000mVims +]
ATz jegsyeyrys

~ Signal Acquisition and Analysis

” Low-pass Filter: None .

Figure 28

For example, Figure 28 shows the APx Signal Generation controls for the case of an Analog
Output Connector type, when the Waveform type is Sine (the standard sine generator). Figure 29
shows other variations in the Signal Generation controls, depending on whether the Output type
is analog or digital, and the Waveform type is Sine or Arbitrary Waveform.

— Signal Generation — Signal Generation — Signal Generation
w avefarm: ISine 'I w avefarm: I‘IkHz-L_EkHz-FI.wav 'I w avefarm: I‘IkHz-L_EkHz-FI.wav 'I
Frequency Lewvel Description: 12 Steren Deseription: Charen
+10dE Lewel: I'I 00.0 rivims 'I Lewel: |-2D. 000 dBFS vl
it =
.:I;-:: ™ Bit Exact
-10dB
100000kHz ~| [20000deFs =]
cr: [l £ Tz aysyey7ys] cr: [l £
a) Digital Output, Sine generator. b) Analog Output, Arbitrary waveform. c) Digital Output, Arbitrary Waveform

Figure 29. Variation in Signal Generation controls displayed by Output type and Waveform type

By studying Figure 28 and Figure 29, you can see that the LabVIEW Signal Generator Settings
cluster contains all of the basic generator controls that could be needed for any combination of
output type and waveform type. On first glance, it might appear that this doesn’t make sense - for
example, why make the digital level control visible when using the analog generator? However,
it should be noted that (1) these are driver VIs that are not meant to be visible, not a User
Interface, and (2) the controls must be present in order for LabVIEW to be able to pass them into

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 27 of 64

and out of a subV1. Hence, the controls for all signal path contexts are present, and it is up to you
to ensure that your program uses the right controls.

How the Driver VIs Handle Units in Configuration Settings
The APx500 application has sophisticated controls that have the following features:

« Numerical value and units are combined in one control (e.g., 1.000 Vrms)
« Values are converted to SI formatting (e.g., 1.000 mVrms or 1.000 yVrms)
« Conversion among units occurs within the control (e.g., Vrms, Vp, Vp-p, dBV, etc.)

In the APx LabVIEW .NET Driver VIs, controls for setting the measurement configuration
handle this by using a numerical control accompanied by a units control. Hence, as shown in
Figure 30, to set the analog generator to 100 mVrms, you would set the Analog Level control to
100m, and the Analog Units control to Vrms. To set the analog generator level to -20 dBV, you
would set the Analog Level control to -20.0 and the Analog Level Units control to dBV. Note
that LabVIEW controls do support the use of Sl formatting (100m = 0.100, 10.0k = 10,000, etc.)

Analog Level Analog Level Units
|1IIIIIIm :;;ll'-.-'rms i}
Figure 30

Units are handled differently for results returned from APx. This will be discussed in the section
on Accessing Measurement Results, later in this document.

Changing Measurement Settings—A Simple Example

Now that we’ve covered units, we are ready to try configuring the Level & Gain measurement
settings using the My APx Program VI. When the Level & Gain Config cluster control was
added to the VI, it had the default settings that a Level and Gain measurement would have when
first added to the APx project. Open the APx500 application and ensure that the Connector in
Output Configuration is set to Analog Unbalanced (Figure 31).

wp Jutput Configuration

Connector; I.-’-'malag Unbalanced j Sethings... |
Channels: IB 3:

Figure 31

Next, change the values of some of the controls in the Level & Gain Config cluster on the front
panel of the some of the My APx Program V1. For example, change the Analog Level to 200m,
the Frequency to 2.0k, uncheck some of the checkboxes of the Generator Chs enabled control,
and change the Low-pass Filter from None to 20 kHz (Figure 32). Now run the VI. The
corresponding settings in the APx Level and Gain measurement will be changed and the
measurement will be run.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 28 of 64

20000k -
oom -
2000 ¢
ol] o o

ook
o cro—
Emm a

Figure 32

Changing Measurement Settings—A Better Example

The simple example above works, but it has the disadvantage that it will change all of the Level
and Gain Generator and Signal Acquisition settings to the values in the LabVIEW cluster
control. This is not how most users will want to interact with APx; most users will want to
change only one or two settings — for example the generator level or the generator frequency. To
accomplish this, the LabVIEW V1 will have to read the current state from APx and then allow
the user to change the one or two desired settings. The measurement configuration VIs were
designed specifically with this in mind. To see how, let’s take a look at the context help for the
APx500 Config-Level & Gain GetSet All VI (Figure 33).

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 29 of 64

APx500 Config-Level & Gain GetSet All.vi

SEt I:F:I
APxr500 Reference in [RF00] APx500 Reference aut
Signal Path & Measurement = IE:L"&E.' b= Signal Path & Measurement oot

Lewvel & Gain Config WLEVEI & 5ain Config out
Errar in (no error) error ook
This YT gets or sets the APx500 Level and Gain Generatar and Acquisition and Analysis

parameters for the specified Signal Path and Measurement,

If Set is True, the Y1 kries bo set the parameters as specified by the Level and Gain control,
then reads and returns the values that have actually been set,

If Set is False (default), it just gets the parameters From APx without changing them,

Figure 33

As shown, this VI has two functions: it can be used to get the configuration settings from APX or
to set them. Note that the GetSet VI always reads the settings back from the APx500 application
after setting them. This ensures that the state of the APx500 application is always maintained by

the application itself rather than by LabVIEW. This helps to prevent confusion.

So let’s look at how to use these Get and Set functions in a LabVIEW V1. We will modify the
My APx Program V1 to be interactive, to allow the user to change only the specific controls that

they wish to. Proceed as follows.

1. Inthe My APx Program VI, delete the Perform Measurement V1, the Simple Error Handler
VI and the Measurement Complete indicator. These will be added again later. Next, add
white space to the diagram as shown in Figure 34 (e.g., using Ctrl-drag with the mouse).

B My APx Program.vi Block Diagram * - |EI|£|
File Edit WYiew Project Operate Tools Window Help |&>
©|E|||.,u||ﬁb|uﬁ|13pt5ystemFont B B | i
-
TE]
= e =
ignal Path Level 2 Gan Confié]
e APxson|f!
= I £y
e asurement
labe
|
-
Kl o[/
Figure 34

2. Add a Boolean button control to the front panel and label it “Update APx Settings” (Figure

35).

Getting Started with the Audio Precision APx LabVIEW .NET Driver

Page 30 of 64

Ipdate &P Settings

Figure 35

3. Add an Event Case around the APx500 Config-Level & Gain GetSet All VI, move the Update
APX Settings control into that case, and change the event handled by the case to be a Value
Change of the Update APx Settings control (Figure 36). When the modifications are finished,

this will cause the configuration settings to be sent to APx when the button is pressed.

B! My APx Program.vi Block Diagram * - |EI|5|
File Edit Wiew Project Operate Tools ‘Window Help |
—
= @E@hﬂ@‘g [13pk System Fork |~ |2 l[Ga~] [25~] i
=
[[0] "Update APx Settings™: Walue Changs *pH
TE
[RF500]
il
|u .‘+>$I';:M| 7) G
Bignal Path Level & @ain Config
APx500
aks CTL
Config
e B =
e asuUrement
Ipdate APx Settings
abc
(=14 o]
TF fasnis
-
Kl | o[
Figure 36

4. Add a While loop around the event case, change its input tunnels to shift registers, and then
wire and rearrange the shift registers as shown in Figure 37.

! My APx Program.vi Block Diagram * - |EI|1|
File Edit Miew Project Operate Tools Window Help J
—_ o=
@ @/n @ Lo 5 o9 [13pk System Fort A[3=-1[T=][25-] i
5
[0] "Update APx Settings™: Yalue Changs T
2
kil v
o s =
Bignal Path Level & zain Config
APEOD
abc CTL
Config
e B =
zasurement
Ipdate APx Settings
abc
_ETE -
TF o
-
4 | o[
Figure 37

Page 31 of 64

Getting Started with the Audio Precision APx LabVIEW .NET Driver

5. Create a local variable for the Level & Gain Config control as follows. Right-click on the
control’s terminal on the block diagram and select Create — Local Variable. Insert the local
variable between the beginning of the While Loop and the Event Structure, and wire it as
shown. You will need to add another shift register to the While Loop (Figure 38).

_(o x|
File Edit W¥iew Project Operate Tools ‘Window Help ||_
1 T [=] — e{,
EEIO b/ of [LoptsystemFort |~ |31] [20~] 1
[[0] "Update AP= Settings™: Yalue Change ~
—=
LT _4% =
i > 5PEm| E
Bignal Path Lewvel & Gain Config
EB500)
Lobe b iy Ehppight===0 el
b B =
feasurement] |
e i date APx Settings
b cl é %
TF —
[l
4 | o[
Figure 38

6. To make this VI function properly, we need to connect something to the input of the shift
register created in step 5. Otherwise, the Level & Gain Config control will not be initialized
properly. We want to initialize it to the values that are currently set in APx. Therefore, we
need to get the values from APx. Add a copy of the APx500 Config-Level & Gain GetSet All
VI to the diagram outside the While loop and wire it as shown in Figure 39. Note that the
nothing is wired to the Boolean Set input at the top of the VI. Hence the default value (Get)
will be used, causing the VI to get all the current settings from APx and initialize the Level &
Gain Config control to those values.

k2| My APx Program.vi Block Diagram * - |EI|5|
File Edit W¥iew Project Operate Tools ‘Window Help |
— e
@ @/n Lo i o [13pt System Font |2~ 12a~] (25~ | 1
[[0] "Update AP Settings": Yalue Change v
]
1 EE i Litility == Iv::
e EE e I'::_.
Bignal Path Level & Eain Corfig
fabe i | I I I &
= : Canfia
EasUr Bment f
| Dpdate 4Px Settings]
. |pdate APx Settings
L -
TF pes
-
Kl | o[
Figure 39

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 32 of 64

7. To make the VI functional, we need to wire something to the conditional terminal of the
While loop. Create a stop button by right-clicking on the terminal and selecting Create —
Control. Next, create a Stop case in the event structure, move the Stop control’s terminal
inside the case and wire it as shown in Figure 40.

File Edit W¥iew Project Operate Tools ‘Window Help

@E@ I.pgilﬁ'iuj | 13pt System Fonk

A2~ a 251

Litility
Wl SRR il

Gignal Path
|abc

35

easurement

abc

LG

B |Level & Gain Config

EE|

4
Figure 40

8. Next, we will add the capability to run the Level and gain measurement. Add a Boolean
button Control to the front panel and change its label to “Run Measurement”. On the block
diagram, add a case to the event structure that handles a value change of this control, and
move the control’s terminal inside this case. Finally, add the Perform Measurement V1 to this
case and wire the case as shown in Figure 41.

B! My APx Program.vi Block Diagram * - |EI|5|
File Edit Wiew Project Operate Tools ‘Window Help |
»[@] @[n][7][25] [sal@] o7 [130t System Font BRI | =
=
| |

[[2] "Run Measurement”™: Yalue Change

{I[Source

]
G Utilicy Iv:: -e ______
|u& b fin YO I.:'._. |~ =
Eignal Path
aks — N © N
b "i
e asuUrement
abz S| Level & Gain Config Fun Measurement
—FR] 1| I . . | |
TF
- Ll m =
ﬂ | W[
Figure 41

The front panel of the finished VI is shown in Figure 42. When you run this VI, it will get the
current Generator and Signal Acquisition and Analysis settings from the APx application and

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 33 of 64

initialize the LabVIEW Level & Gain Config control to these values. Then, you can change
various settings in the LabVIEW control, and pass the settings to APx by clicking the Update
APX Settings button. To try it, before running the VI, change a few of the Generator settings in
APX. Once you run the VI, it will update the Level & Gain Config control to the current APx
settings. Next, change some settings in LabVIEW and then click the Update APx Settings button,
to change the settings in the APx500 application. Finally, you can click the Run Measurement
button in LabVIEW to make the APx500 application run the Level & Gain measurement.

B My APx Program.¥i Front Panel *

File Edit Wiew Project Operate Tools ‘window Help

3 3 e | o IR

20000k |
oo |
000 4
22] o o
1000k 4

o cro—
o | -

£

G o o 1= S ey

Figure 42

Note that if the Output Connector is one of the analog types (Analog Unbalanced or Balanced),
when you run this V1, it sets the Digital Level control to 0.00 and its units to FS. Furthermore, if
you change the Digital Level control and again click the Update APx Settings button, it again
resets the Digital Level to 0.00 and the units to FS. This is because the Digital Level setting has
no meaning in the context of a signal path with an Analog Output. Therefore, you should be
careful to ensure that the context is correct for the controls you are using. For example, if you
change the Signal Path from LabVIEW (to be discussed later in this document), be sure to get the
measurement configuration settings after doing so.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 34 of 64

Generating Arbitrary Waveforms with the LabVIEW Driver Vis

In the APx500 application, by default the Waveform type is Sine. This refers to the Sine
generator built in to APx. Depending on the signal path setup, many of the measurements also
allow other built in waveforms, such as Square waves, Split Sine waves or Split Phase, and
arbitrary waveforms using imported .wav files. To add an arbitrary waveform to the project, the
user selects the Browse for file... option in the Waveform list box control (Figure 43, left) and
selects a waveform file from a disk drive on the PC. Once waveforms have been added to the
APX project, they are available for selection from the list box (Figure 43, right). To revert back to
the Sine generator, the user simply selects Sine in the list box.

— Signal Generation — Signal Generation
W aveform: Sine j W aveform: Heference_LeveI_-Ej
Sine . Sine
Frequency S quare D escription: S quare
Split Frequency ; Split Frequency
Split Phas Level |Split Phase
seforfle.. iFeterence Level OdB 48 24 way
: Reference_Level_-20dB_48. 24 vaay
A0 I Heference_!_evel_-EEIdB_dﬂ. 24 wmay
[loooookHz =] [100.0mvms =] Browse for fle..
Ch cr: [£

Figure 43

In the LabVIEW driver Vs, this waveform functionality is accessed using the controls shown in
Figure 44, which are part of the Signal Generator Settings cluster. In the LabVIEW Driver, the
Waveform Names control is an array containing the names of all the waveforms loaded into the
APX project, and the Selected Waveform Index is the index of the Waveform Names array
corresponding to the currently selected waveform. For example, the left side of Figure 44 shows
how the controls would appear if the APx waveform was set to Sine (index 0), and the right side
of Figure 44 shows how the controls would appear if the APx waveform was set to the 4"
arbitrary waveform contained in the project (in this case the file named 7kHz-L_8kHz-R.wav).
In LabVIEW, it is the Selected Waveform Index that is used to change the waveform in APX.

: WaveForm Names ' : WaveForm Names
\Selected Waveform Index \Selected Whaveform Index
:“J‘D [JEit Exact :"Jld‘ [JEit Exact
Figure 44

You can use the My APx Program VI to try this out: First load a few waveforms into the APx
project using the Waveform — Browse for file... option shown on the left side of Figure 43. Set
the Waveform control in APx to any one of the loaded files. Then run the VI. The Waveform
Names control in LabVIEW will be updated to contain the list of waveforms you just loaded, and
the Selected Waveform Index will correspond to the index of the selected waveform. To change
the Waveform in APX, change the Selected Waveform Index to a different number, and click the
Update APx Values button. The APx waveform selected will change accordingly. To change the

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 35 of 64

Generator back to Sine, change the Selected Waveform Index in LabVIEW to 0 (zero) and click
the Update APx Values button.

Note that there is no provision in the APx API for adding waveforms to a project; they can only
be added to a project from the APx500 application’s Ul.

Measuring .wav Files with the LabVIEW Driver Vis

When the Input Connector in Signal Path Setup in APx500 is set to File (Analog Units) or File
(Digital Units) a button labeled “File List...” appears in the Signal Acquisition and Analysis
section of the measurement controls area. When clicked, this button allows the user to specify a
list of .wav files to be measured (Figure 45).

NOA=TEY

File pddFiss. |
1 |CANWaveforms\Freq_sweep 11_-20dB_48 24 way =
2 | ChNwaveforms\Freq_sweep 11_0dB_48 24.way Ml
3 CANWaveformshFreq_sweep 17_-1dB_48.24 wav
tove Up |
I ave Down |

Low-pass Filter: I Mone i I

Qk. Cancel Help |

|’ Signal Acquigition and Analysis

Figure 45

In the LabVIEW Driver Vs, this list of .wav files is handled as a string array labeled “Input File
List” in the Signal Acquisition and Analysis Settings cluster control (Figure 46). When
LabVIEW gets the settings, this string array will be loaded with strings such that each element of
the array represents the full name and path of one file in the APx file list. The LabVIEW String
to Path function can then be used to convert these strings to LabVIEW file paths. To remove a
file using LabVIEW, string elements may be removed from the end of the array before passing
the array back to APx using the set function.

Signal Acqdnalysis SettingsL&E)

\LuwpassFiIterType
)| ore 500001
Input File Lisk

'{]2 IlC:'l,WaveFu:urms'l,

Figure 46

Recap—Configuring Measurement Settings

The above example illustrates changing the APx Signal Generator and Signal Acquisition and
Analysis settings for the Level and Gain measurement. The APx LabVIEW .NET Driver VIs use
this same model to change the settings of all measurements in APx. If you look at the
configuration section of the VI Tree (Figure 11) you will see that each measurement has either

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 36 of 64

one or three configuration VIs. Those measurements with three VIs are ones like Level and Gain,
which have both Generator settings and Signal Acquisition and Analysis settings. In this case,
there is a GetSet Generator VI, a GetSet Signal Acquisition & Analysis VI and a GetSet All V1.
This allows LabVIEW user to get or set either of the Generator settings, the Signal Acquisition
and Analysis settings, or both.

Measurements with only one configuration V1 are those which in APx have only Generator
settings (e.g., Frequency Response) or Signal Acquisition and Analysis settings (e.g. Noise), but
not both (Figure 47). These VIs should be used exactly as described above. You should get the
current settings from APx before changing any parameters, and then do a set to update APX. In
addition, the set VIs always do a get after setting, to ensure that they return the correct state of
APX.

Frequency Response ‘ Hoize ‘
T

(= Dutput Connectar: I.-'l'-.nalclg Unbalanced (= Dutput Cannectar: I.ﬁ.nalug Urbalanced

-) Input Connector: |.-i‘-.nalcug Unbalanced - Input Connectar: |.¢‘-.na||:ug Inbalanzed
| Edit Signal Path Setup... I Edit Signal Fath Setup... |
— Signal Generatian Signal Acquizition and Analpsiz
Start Frequency: Low-pass Filter: |2|:I kHz j
[20.0000 Ha R '+ 108 Filter: |20 Hz highpass > |
inc =
Stop Frequency: dec Advanced Setiings... |

|2n.nnnn kHz ~| & 0de-
|1 00.0 miv'rrns =l

ch OO OO OEO

Advanced Settings. . |

Figure 47

About the Orange Colored Controls

You may be wondering why the LabVIEW Driver VI cluster controls introduced so far in this
document have been orange colored. It’s not because we like the color orange. Rather, the
controls colored orange in the driver Vs are a special type of LabVIEW custom control known
as a Type Def. (short for Type Definition). In LabVIEW, a Type Def. control is a kind of
“master” control.

When a Type Def. control is used in a collection of Vs, it is much easier to maintain the code
because if you alter the Type Def, any VIs containing that control will be automatically updated
as well. This is a handy feature. For example, there is a Low-pass Filter control that is used in
many of the VIs in the driver collection. Suppose that the number of Vs it is used in is fifty. If a
Type Def. was not used for this control, when a new type of Low-pass filter is added to APx in
the future, all fifty of the Vs containing this control would have to opened and modified

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 37 of 64

individually. Since the control is a Type Def., it only needs to be changed once, and the fifty
dependent VIs will be updated automatically. The orange color is used simply to make it obvious
that a custom control is a Type Def.

It is easy to change the orange color of controls used in the driver VIs. First, you need to
disconnect the control from its Type Def. To do so, right-click on the edge of a cluster control
and select Disconnect from Type Def. You will be prompted with a dialog box to confirm this
operation. Note that many of the cluster controls contain sub-controls that are also Type Defs.
Therefore, you may need to disconnect several controls from their Type Defs to completely
remove the orange color. Figure 48 illustrates the process for one of the Type Defs in the Level
& Gain Config cluster, and the final result when the color of every orange control has been
changed.

Level & Gain Config Lewel & Gain Config
Signal Generator Settings (L) i i
. FE— , Signal Generakor Settings (L&G)
Frequency Frequency Linics Find b Frequency Frequency Units
F. h
II'DDEIljk \JHZ D hange to Indicator 1,0000k 'J bz 0
Analog Level \F\l'lab';l Lewel Units Analog Level Analog Level Units
£ Update from Tvpe Def, Py
100m | ¥rms 0 100 Wrms i
I. ; JD ital Level Lnit Open Type Def. - = rj o .
Digital Lewvel Digital Lesel Units = e e B Digital Lewel Digital Lewvel Units
£ Nisconnect from Type Def, .
-20,00 dBFS 2 . dBFs
I d Shiow YT Hierarchy ! EII r) ‘
Generator Chs enabled: Generator Chs enabled:
r,: p p p r,.p |¢ |¢ |¢ Descripkion and Tip. .. FWW
Frequency B Frequency B
(10000 B I B ooook
PrEsmE ;‘Phase tinits Disconnect the control “Sigral Phase B Phase Linits
|1,|ju|:||jk ‘ddeg 0 Generator Settings (LeG)" Fram its 1,0000k a deg 0
WaveFarm Names Type Definition, "APx500 Ctl - Level & e o ENES

r Gain Config Generator, ctl"? g
__?}lﬂ Ilsme oo ||5“.,E
‘SElectEd WWaveform Index LCE'I Selected \Waveform Index

}HU Bt Exact ;) 0]Gt Exact
Signal AcgAnalysis Settings(Lada) Signal Acqinalysis Settings(Lea)
’\LowpassFiIterType ‘anpassFiIterTvpe
) Hane 500001 5| Hone 500001
) Input File List Input File List
&+ C
Figure 48

Working with Cluster Control Subsets

Most users will not want to set all of the controls included in a large control cluster like the Level
& Gain Config control. For example, suppose you are only using the Analog Unbalanced Output
Connector in APx, and all you want to do is control the generator level and frequency. In this
case, most of the controls in the Level & Gain Config cluster are not necessary. To handle this
scenario, consider customizing controls.

For example, in the My APx Project VI, let’s create a control that will allow us to change only
the analog generator level and frequency. Proceed as follows.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 38 of 64

1. Since we are only changing the generator settings, we can use the Level & Gain GetSet
Generator VI instead of the GetSet All VI. Right-click on the GetSet All VI on the block
diagram, and use the Replace menu to change the V1 (Figure 49).

Visible Ikems 2
Help

Examples

Description and Tip. ..

Set Breakpoink

Level & Gain Palette »

Create 3 .

Replace Level & Gain Palette » @ APx500 Config-Lew
Relink To SubyT el relaiies 4 o

SubWI Mode Setup... il

Enable Database Access L &G all

3in Get3et Generator.vi

L &G Gen

=
L=

L& Gacg

Call Setup. ..

Find All Instances
Dpen Fronk Panel
Show YT Hierarchy

J Wiew As Icon

Figure 49

2. Disconnect the Level & Gain Config control from its Type Def. (if is not already

disconnected) and disconnect the Signal Generator Settings (L&G) cluster from its Type Def.

3. Drag the Frequency and Analog Level controls out of the Level & Gain Config control

cluster.

4. Delete the Level & Gain Config cluster, so that only the Frequency and Analog Level
controls remain in its place (Figure 50 and Figure 51).

Signal Generator Settings (L&G)

Frequency Frequency Linits

[10000k | £ . ﬁ?u?uf_
Analog Level F\nalng Lewel Units Aok i)
| 100m Tjwms ! 100m
Digital Lewvel Digital Lewvel Unlts

In,nn \5:|I:IBFS z

Generatar Chs enabled:

Frequency B

froncok |

Phase B Phase Units

10000k | rjideg 0
Wareform Mames

Selected Waveform Index

}]U []Bit Exact
Figure 50

Getting Started with the Audio Precision APx LabVIEW .NET Driver

Page 39 of 64

k! My APx Program.vi Front Panel * 10| =|
File Edit “iew Project Operate Tools ‘Window Help J
= e g
.ﬂ@ﬂ @ ||]| 13pt Application Font |+ |[§ov | oa~ |22 | [£~ 1
B
sianal Path [I e Update APx Setting
q
| | Signal Pathl |1,0000k,
O N Y g "J
paswrement Analng Leve Tl L
| |Level and Gain imnm
skol
|STOPH
T bt
Kl | vl 7
Figure 51

5. Finally, rewire the block diagram as shown in Figure 52. Note the use of the Unbundle by
Name function outside the Event Structure, and the use of the Bundle by Name function.
These functions are used to get the values of only the Frequency and Level controls from the
Signal Generator Settings (L&G) output cluster, and to pass them back in to the
corresponding input cluster.

! My APx Program.vi Block Diagram * o [5
File Edit Wiew Project Operate Tools ‘Window Help]
> [2] @[] [F][25] [bal@]o? [L2et system Font B =
=

[[0] "Update APx Settings”: Yalue Change]

=
Likility S= — e e — e
szeam], JliG-G ';
Bignal Path [
= SV { SN S -
v}
5
Frequency Frequency i
= findlog Level [Frequency 1J] |
] Analog Level Analog Level II

dabe APx Settings| Analog Level

&

L
Figure 52

The My APx Program VI as modified to allow the user to change only the generator frequency
and level of the Level and Gain measurement is now ready to run. If you run it, you will see that

it functions as it did before.

The APx LabVIEW .NET Driver VIs use cluster controls extensively. The best way to get
individual data items out of a cluster or into a cluster is by using the Bundle by Name and
Unbundle by Name functions in LabVIEW. Figure 53 (left) shows the Unbundle by Name
function being used to extract specific elements of the Signal Generator Settings (L&G) cluster.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 40 of 64

Fignal Generator Settings (LaG)] Fignal Generator Settings (L)

EFRE00 AR
2gql-Ge Egl-Ge E
Fignal Generator Settings (LaG)]
Frequency 1nits Frequency nits Fsa00
v gl-Gen
L=
Analog Lewel Units Analog Lewel Units
Figure 53

Figure 53 (right) shows the Bundle by Name function being used to replace 4 specific elements
of a Signal Generator Settings (L&G) cluster.

Accessing Primary Measurement Results with the LabVIEW Driver

Although the examples to date have illustrated running measurements in APx, we haven’t yet
considered how to work with the results of APx measurements. To be of value, an external
program that controls the APx500 analyzer must be able to access the measurement data. This
section will focus on accessing APx primary measurement results (results that normally appear
when you add a measurement to the navigator) with the LabVIEW driver. The following sections
discusses derived measurement results

First, let’s review what measurement results look like in APx. Create a new project in APx using
the default project template, and add a Stepped Frequency Sweep to Signal Pathl. If you expand
the branch of the Navigator tree containing the Stepped Frequency Sweep measurement, you will
see a number of objects within this branch named Level, Gain, Relative Level, etc. These are
measurement Results of the Stepped Frequency Sweep measurement. They can also be selected
by clicking on the appropriate icon in the window beneath the Graph in APx (Figure 54).

| Stepped Frequency Sweep Audio Precision APx500 I

g Stat L} Appcrd B & S EE(C B -G [xHe ~yvms « [E Undock
(= Dutput Connector: IAnalng Unbalanced Level

100

- Input Connector: IAnang Unbalanced 50

[EHide

YR S E= R
= [Project -
=B Signal Pathl

= Signal Path Setup

_J Signal to Noise Ratio

- [0 Signal Path Diagnostics Edit Signal Path Setup.. | 20
= Reference Levels 10
#-[JJ Level and Gain — Signal Generation ————————————————— 5
-] THD+N W aveform: Sine 'l 2
- F]

| VIR RIS Start Frequency: & Logarithmic 1
=8

OO0O00000oo0

.~ 500
-0 Crosstalk 200000kHz »| Linear 2 T
- Interchannel Phase) UZDDm
e e S Stop Frequency " Custom S 100m
|20 0000 Hz ~| Paints 50m
| [m[G = 20m
O Relative Level Level z el
OO Deviation (20,0000 Hz - 20.0000 kHz) g B | [100.0 moms =] it
O® Phase N 2
~-O= THD+N Ratio 1 m
-C1® THD+N Level m
500u

‘d Sc.ld M‘epasf;:ement... — Signal isition and Analysiz
ignal Path...

““““ Low-pass Filkers INUne 'I 100u

20 50 100 200 50D 1k 2k Bk 10k 20k
THD+M Filter: 0 Hz highpass ™ Frequency (Hz)

& Undock
Acquisition: |al -

Scope (Signal) Phass ™~
Rief Ch. I ICM : 'I
%QDU ’7 e ‘ mF’lewous mNth @Hida

Advanced Seftings...

Ad

B
=
5

=]
)

Lewel Gain Relative Level Devistion [20.0000 H:
20,0000 kHz)

] 2m 4m &m 8m 10m 1] | i
Time (s}

ra
=]
&

Instantaneous Lev

Figure 54

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 41 of 64

In the case of the Stepped Frequency Sweep measurement, there are seven results available. If
you run a Stepped Frequency Sweep measurement and browse through the results, you will
notice that six of the seven results are displayed as an XY graph (e.g., Level is displayed as a
graph of Level versus frequency). These are referred to as XY type results. One of the results in
the collection - Deviation - is displayed as a bar graph with one bar per channel Figure 55. These
latter results, which consist of a single value, are referred to as Meter type results.

Level Deviation (20.0000 Hz - 20.0000 kHz)
100 Ap) = Cht Ap)
50 = Ch2 Chi ‘ +51.378dB
20 - -
10 Ch2 ‘ 5142008
5 " "
2
1
— 500m
w
£ 200m
< 100m
T 50m
20m
10m
Em
2m
im
500u
200u
! JJU2 0 50 100 200 500 1k 2k 5k 10k 20k +0 +20 +40 +60 +80 =100
Frequency (Hz) Deviation (dB)
Figure 55

Each measurement has a different results collection - some have all Meter type results, some
have all XY type results, and some have a combination of the two result types.

Now let’s look at how the LabVIEW driver handles measurement results.

Open the APx500 Example-Simple Meter Measurement V1 (available from the Examples sub-
palette of the driver palette) and examine its front panel. Ignore the orange color of the controls.
This simply denotes that they are still associated with their Type Defs. This VI is set up to
configure and run a Level and Gain measurement located in Signal Pathl (one of the defaults for
a new project file created with the default template). Notice that the Selected Measurement Index
is set to 3 (the position of the Level and Gain measurement in Signal Pathl.

The Level & Gain Config control as set in the project will set the analog generator to 100 mVrms
or -20 dBFS at 1 kHz, and enable all generator channels. Configure the APx500 application to
use two Input Channels (in Signal Path Setup). Now run the VI and observe the contents of the
Measurement Results Cluster (Figure 56). Note that it now lists the Path Name as Signal Path1,
and the Measurements array inside the Measurement Results cluster has one element - with
Measurement Name field containing “Level and Gain”. Inside the Data cluster are two more
arrays named “XY Results” and Meter Results”. Note that the XY Results array is empty (this
makes sense, because Level and Gain has no XY type results). Also, the Meter Results array has
two elements: one for the Level result and one for the Gain result. As shown, clusters in the
Meter Results array contain an indicator showing the result name, the units, and whether all
channels passed upper and lower limits.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 42 of 64

! APx500 Example-Simple Meter Measurement.vi Front Panel on My Computer !E[E

File Edit Wew Project Operate Tools Window Help

m M L3pt Application Font vl @@@

C P

fm
r
%
£ cro—
£
10000k |
1o0m 14 tem ‘m
2000 12 R Level L))

s

o
£ Ea—— o

s O

o

.

[y Cormputer] < 14
Figure 56

If you change the index of the Meter Results array, you will notice that there are two elements in
the array, corresponding to the two results available (Level and Gain). Inside the cluster is an
array called Readings, which in turn contains a cluster of result Values, and indicators Passed
Upper Limit and Passed Lower Limit (Figure 57). Note that the number of elements in the
Reading array corresponds to the number of Input channels selected in APx (in this case two).

£
st)

&
Wrms

Em

4

o

Figure 57

At first glance, the Measurement Results cluster appears complicated. However, if you study it,
you will find that the data is organized in much the same fashion as the measurements results are

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 43 of 64

organized within the APx500 application. Furthermore, it is a very efficient scheme for getting
the measurement data from APX, because all of the results from one measurement are contained
in a single cluster that can be passed to subVIs in a single wire (Figure 58). In fact, the
Measurement Results cluster can hold the results for all the measurements in one signal path.
This will be demonstrated later, with an example that runs a Sequence in APX.

Signal Path & Measurement | MOTE: The &P%500 reference is kept open so
gg*ﬁf“‘ the APwS00 .MET pragram will remain open.
n easurement Resulks
Level & Gain Config ZEx500
AP500 by e
CTL =l
G
¥} q
= e
i Al
|O|JBH a reference ko the Configure the Level and Gain measurement, Perform the Level and Gain measurment
MOTE: the Signal Path & Measurement name and return the results.,

AFx500 application

must match one already Found in the currently
loaded APxS00 project. You can use the
"APxS00 Get Signal Paths, vi' to get the list of
signal paths currently in the project. By default,
this points ko the Level and Gain measurement
Found in the default APxS00 project.

Figure 58

Note in Figure 58 that there are only three Vs needed to open a reference to APX, select and run
a Level and Gain measurement, and get back all the data for that measurement.

There is a similar example in the driver V1 collection named APx500 Example-Simple Sweep
Measurement.vi. This example runs a Stepped Frequency Sweep and returns the Measurement
Results cluster. If you run it, you will see that the XY and Meter results returned correspond to

those available for this measurement in APX.

There are two driver VIs in the collection that simplify getting Meter results and XY results from
the Measurement Results cluster. Their context help is shown in Figure 59.

APx500 Get Meters from Measurement.vi APx500 Get XY Plots from Measurement.vi

Resultant %% Plots
Bl 22 % Units
== grror ouk

Resultant Meker Yalues Measurement Results
= MekerUnits Measurement Name ~
= grror aub Result Mame
errar in {no error)

Measurement Results
Measurement Name
Result Mame

errar in {no error)

Will input the Full cuskorn APxS00 LabYIEW data set for one measurement Will input the Full custom APxS00 LabWIEW data set For one

and return an array of meter results for a selected measurement result measurement. and return an array of XY plots and a cluster of ¥ and ¥
with & string containing the meter units, units for & selecked measurement. The number of elements in the
Resultant k¥ Plots array corresponds to the number of Input

Audio Precision Channels in APx.

WA, &P, COM

JET Audio Precision
WA, 3P, COM
JET

Figure 59

For an example of how to use the above two VIs, see the example VI named APx500 Example-
Simple Data Results, available from the Examples sub-palette of the driver menu Palette.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 44 of 64

Handling Dynamic Measurement Results

Measurement results are dynamic, meaning that they can be added, deleted, or renamed.
Furthermore, derived measurement results, which are computed from a source result, may also
be added, deleted, or renamed. When using the LabVIEW driver to access APx data, the main
consequence of this is that you need to ensure that the desired result exists in a measurement, and
that you are using the correct result name. Otherwise, the APx API will throw an exception.

In Sequence mode, when a single measurement is run, this is equivalent to right-clicking on a
measurement in the APx software and selecting Start Selected Measurement. Once the
measurement is complete, APx builds the Sequence results collection, which contains all the
results that were checked before the measurement was run. If you use the VIs in Figure 59 to
attempt to access meters or XY result data, the sequence collection will not contain the desired
result if the result name does not match, the result was deleted from the measurement, or the
result’s checkbox was unchecked in the navigator. To handle this case, a custom error (number
7001) has been created, as shown in Figure 60.

2 A e

o Error 7001 occurred at APx5300 Get Meters from

Measurement.vi

Possible reason(s):

The specified result name does not exist in the APx
sequence measurement results collection. Ensure that the
result exists, its checkbox is checked and you are using the
correct result name.

Figure 60

Returning All Data Points

In Sequence mode, measurement results are added to the Sequence Data Buffer every time the
sequence is run. Whether XY result data is Same as Graph or All Points depends on the Result
Specification that is set for each measurement result before the sequence has been run. The
following Vs are affected by the Result Specifications:

e APx500 Sequence — Get Measurement Results
e APx500 - Sequence Run All Measurements
e APx500 Sequence — Perform Measurement

The following Vs always return All Points:

e APx500 — Run Continous Sweep and Get Acquired Waveform
e APx500 — Run Signal Analyzer FET All Points
APx500 — Run Signal Analyzer Scope All Points

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 45 of 64

The default Specification is Same as Graph, so in order to retrieve All Points, the settings must
be changed. This can be done in the Export Graph Data dialog box of each measurement (note
that you need to already have result data, and need to export to a file in order to save the
Specification changes).

Export Graph Data X

Graphs | Bl Check All OJUncheck All

Result Data Type Specification
RMS Level RMS Level Same as Graph ©
Gain Gain Same as Graph =
Relative Level (1.00000 kHz) Relative Level Same as Graph o
Deviation (20,0000 Hz - 20,0000 kHz)|Deviation All Points
Phase Phase Same as Graph ¥
Group Delay Group Delay Same as Graph ¥

Data Set: | All Data v

Channels: |All Channels

0K Cancel Help

Figure 61 Export Graph Data, Same as Graph

Export Graph Data x

Graphs | B Check All O Uncheck All

Result Data Type Specification
RMS Level RMS Level All Paints o
Gain Gain All Points i
Relative Level (1.00000 kHz) Relative Level All Points e
Deviation {20.0000 Hz - 20.0000 kHz)|Deviation All Points
Phase Phase All Paints v
Group Delay Group Delay All Points v
Data Set: | All Data w

Channels: |All Channels

oK Cancel Help

Figure 62 Export Graph Data, All Points

We have also created a VI, APx500 Data — Set All Points, that traverses every Signal Path,
Measurement, and Result in a project and sets the Specification to All Points. This VI only needs
to be run once and then the project may be saved to preserve the Specification settings.

Note the following pointers about saving data:

e If the number of points is low, then Same as Graph and All Points may return the same data
set.

e The Bench mode VIs, APx500 Bench — Get Measurement Results, and APx500 Bench —
Export Results, always get All Points.

e When using a .NET invoke node to retrieve data directly from a measurement (instead of
from the Sequence Data Buffer), use GetAllXValues and GetAll'YValues to get All Points.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 46 of 64

L[5 XVGraph ““

| |—I_' ch ﬁ"-lr [X¥Graph ﬁ,
Left =+ axis ¥
’ ch
[Left =} axis

H
Figure 63

e When using a .NET invoke node to export data from a measurement to a file, use All Points
as the exportSpecification argument.

1% "+ IDynamicResultGraph }

-

AsXYGraph {5+ [XVGraph &
ExportData

' fileMame
i J2ll Pointsp{+exportSpecification

How the Driver Vis Handle Measurement Data Units

Currently, driver Vs are configured to return measurement data in the same units as currently set
within the APx500 application. To use different units for a measurement result, you must change
the units displayed for that result in the APx500 application.®

Figure 64

Running an APx Measurement Sequence

Included in the driver collection is a VI named APx500 Example-Run Project Sequence.vi. This
example is equivalent to clicking the Run Sequence button in APx. It will run all checked
measurements within all checked signal paths and return all measurement results for the entire
sequence in a LabVIEW array of Measurement Results. Figure 65 shows the Measurement
Results array that resulted from a Sequence being run on an APx project with two signal paths.
The first checked measurement in the second signal path (index zero) was a Continuous Sweep
measurement. Note that the elements in this array of clusters are the same as Measurement
Results cluster returned by the Perform Measurement V1. In this case, the array contains one
element for each signal Path in the sequence. This is a very efficient way to get an entire
sequence worth of measurement data from APx to LabVIEW. And as shown in Figure 66, the
LabVIEW code required to get all this data is very simple.

3 Note the API provides the ability to change units programmatically, but this is not supported in this release of the
APx LabVIEW Driver.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 47 of 64

A |
o cro—

£

£ mx £
'/ EE'/
e
J
7

Figure 65

Another variation on running a sequence is illustrated in the example named APx500 Example -
Run Sequence & Save PDF Report.vi, shown in Figure 67. This example was designed to look
more like a User Interface (there are no orange colored controls). It runs a sequence and
optionally exports the APx report to an external file (PDF, HTML, RTF, xls or text). This
example illustrates the use of three utility VIs included in the driver collection: one to open a
project file, one to set the visibility of the APx500 application, and one to turn the APx signal
monitors on or off. See the context help for these VIs in Figure 68. Note that turning the signal
monitors off can save significant CPU resources, especially with high channel counts.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 48 of 64

b APx500 Example-Run Project Sequence.vi Block Diagram on My Computer

El= Edit

Wiew Project Operate Tools Window Help

Eignial Path & Measurement Array]

....................
E—

easurement Resulks
H|FEE

Okiliey | B [Mlesure s H
Gt a
Y| — o

. Connect ko the APx500 applicakion.

. i=et all of the signal paths in the currently loaded project,
. Run the seguence (runs all checked measurements in all checked signal paths),
. Put the results in the data skructure,

RN

MOTE: The Signal Path & Measurement Array inpuk to the Sequence Run All Measurements W1
i= not wired, Therefore, the YT will run all checked measurements in all checked signal paths,
as currently set in the AP project, To select which measurement objects are checked
programatically, this input would have to be wired ko aninput array with measurement
obijects enabled as desired by the user,

My Computer 4 | |

@ ﬂlﬁ'luj” 13pt Application Fork |vl |EI :ﬁ:vl @
[

Figure 66

B APx500 Example - Run Sequence & Save PDF Report.vi Front Panel ... !EI E
File Edit Wew Project ©Operate Tools wWindow Help .

uﬁ I 13pt Application Fonk |~rl :Dvl '._[;vl vl E

My Computer| Ay

Figure 67

Getting Started with the Audio Precision APx LabVIEW .NET Driver

Page 49 of 64

APx500 Utility-Open Project File.vi

APx500 Reference QUT
S FlIE EXISItS?

e oprOF OUE

APx500 Reference IN
APy Project file path
Error in (N0 error) s

Open the specified project file, IF it doesn't exist, APx will throw an
error, and the File Exisits?
boolean wii be set ko fFalse.

APx500 Utility-Get Set Signal Monitors Enabled.vi

Set (F)
Apx500 reference

Enable Signal Monitors
&rror in (no errar)

Apx500 referenceout

SignalMonitorsEnabled
error ouk

APx500 Lititliky to get or set whether the Signal Monitors are
enabled. The Signal Monitars can use significant CPU resources,
especially for high channel counts. Disabling them is less CPU
intensive

Figure 68

The User Interface Example

APx500 Utility-Get Set APx500 Yisible.vi

Set iF)

Apx500 reference
Mazxe APxS00 visible
errar in (no error) =

Apx500 referenceout

APx500 visible
= arror ok

APx500 Lkitliky to get or set whether the APxS00 application is
wisible,

One of the examples included with the driver is a full-featured user interface. Please see the VI
named APx500 Example - User Interface.vi, whose front panel is shown in Figure 69. This VI
allows the user to load any APx project file. It then gets a list of all Signal Paths and
measurements included in the APx project, and adds them to the Selected Signal Path and the
Measurement Selection controls, respectively, on the Test Configuration Panel of the VI. While
the VI is running, whenever the user changes the Measurement Selection, the configuration
controls for that measurement become visible on the panel to the left of the Test Configuration
panel. Here, the user can change any of the measurement configuration settings.

Getting Started with the Audio Precision APx LabVIEW .NET Driver

Page 50 of 64

B! APx500 LabYIEW Based User Interface =101 x|
Test Configﬂmﬂbn Selected Resu\tsl:ath | Jest Resulls
lane =
Frequency Response Configuration Fraject File Name
Start Frequency Stop Frequency = | Selected Results Measurement Selected Measurement . -
oo | Joocoom |] =l Nere = Level = |O Passed Meter Limits
Frequency Units
e 100000000 Channzl 1 g
»;!nalo Level Analog Level Units E -
3 A g Load Praject File
100m 7 wims 0
Digital Level Digital Level Units »
W leFS— q AP Wisible 10.000000 -
Generator Chs enabled: ‘ B
Signial Monitars Engbles
e :g
1.000000 -
Selected Signal Path
Signal Pathl = 1
| Measurement Selection
Frequency Respanse e] E. 100.000000m -
Run Full Sequence
10.000000m —
Perform Test 1.000000m -
100,000000u - 1
STOP 100k,
Hz
Figure 69

The Perform Measurement button on the Test Configuration panel will cause the APx500
application to run the selected measurement. After the measurement is complete, on the Test
Results panel, the user can select which measurement results to display. XY graph type
measurements are displayed as a graph, and Meter type results are displayed as a list.

This example VI can also be used to run all checked measurements in the sequence. If the
sequence is run from the VI, all of the sequence measurement results will be available for
browsing in the Test Results panel of the VI.

The User Interface example is not meant to replace the APx500 application’s Ul, but it does
demonstrate many of the feature available in the LabVIEW Driver for working with the APx
API. You may wish to customize this example to create LabVIEW applications that suit your
own needs.

Configuring the Signal Path Setup

The most convenient way to configure the Signal Path Setup in APXx is to do so using the
APXx500 application’s UlI, then save the project to a project file, and open the project file from
LabVIEW. However, if you want to configure the Signal Path Setup from LabVIEW, the driver
does have VIs to do so. The first two VIs to consider in this regard are shown in Figure 70. One
will get or set the Output Connector Type and the other will get or set the Input Connector Type.
The function of these VIs is very similar to that of the measurement configuration VIs discussed
earlier.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 51 of 64

APx500 Config-SigPath GetSet Dutput Connector Type.vi AP=500 Config-SigPath GetSet Input Connector Type.vi

APx500 Reference in : — APx500 Reference out APx500 Reference in — APx500 Reference out
Signal Path Signal Path out Signal Path Signal Path aut
Qukput Conneckar Type in Cukput Conneckor Type ook Input Connector Type in Input Conneckar Type ouk
ErForin {no error) error ouk errar in {no errar) error auk
Wil get or optionally set the Output Connectar Tvpe For the specified Signal wWill get or optionally set the Input Connector Type For the specified Signal
Path Path
Figure 70

For an example of how to set the Output Connector Type, see the VI named APx500 Example -
Set Output Connector Type.vi. This VI’s front panel is shown in Figure 71, and its block diagram
is shown in Figure 72. If you run the VI and change the Output Connector Type, this change will
be reflected in the APx500 UlI, if the connector type is valid for the connected instrument. If the
connector type is not valid (for example, setting the control to Digital HDMI when the HDMI
option is not present), APx will generate an error. The function of the GetSet Input Connector
Type VI is very similar.

! APx500 Example - Set Dutput Connector Ty - |I:I|1|
File Edit Yiew Projectk Operate Tools ‘Window Help
Zample
|:{> |{§}| @@ | 13pk Systemn Font |+ ” EDYHTU:'“ﬁvi I: R
B
Signal Path
ISignaI Pathi APx500 Example to illustrate
setting the Qukput Connector
Type, Each time the walue of the
Output Connector Type in Output Connector Type is
' tnalog Unbal 4 changed, the VI sets the Cutput
'J‘ naing Unhalance a Connector in the APX application
accordingly, IF an error is Ehrown
{e.q., if a Connector Type that
does nok not exist in the
instrument is selected), it
displays the Simple Error Dialog,
clears the error and then Gets
the Qutput ConnectorTeype,
skop
STOR
-
My Camputer LI I AP
Figure 71

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 52 of 64

Eile Edit Yiew Project Cperate Tools “Window Help

[Sample
]| o] [@][22] [wal] s [1o Appication Fort |~ [3o][a~] L

o[Mo Error 't

[0] "Qutput Conneckor Type in'™: Yalue Change ¥

I

E: tEet
ol —
Dukpuk Conneckar Type in
& 1)
B

Oubput Conneckor Type in

Ky Ky,

[User changed output connectar bype - Set value in APx]

1My Computer <| | M
Figure 72

In the APXx500 application, settings can be configured for each Input and Output Connector type.
Note the Settings... button to the right of the Connector list box control in the Output
Configuration area of Signal Path Setup. When you click this button, the Output Settings dialog
box for the selected connector type opens as shown in Figure 73. There is a similar Settings
dialog for the Input Configuration in APx500.

Signal Path Setup -
'E-b Cutput Configuration

Connector: IDigitaI Unbalanced jl Settings. .. I
Chaniels: Iﬂ

Sample Rate: [48.0000 kHz -l

c o Dl Output Settings {Digital Unbala 0] x|
1 _
Channels: |2 3,

Connectar: Ana
Sample Fate: |4E.EIEIEIEI kHz j

Bit Depth: 24 =
IV Enable Dither

Channels: g
b & B andwidth: IE

Dutput b ode: & Conzumer € Professional

Help |

] Back

Figure 73

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 53 of 64

In Figure 73, the selected Output Connector is Digital Unbalanced. The VI for configuring these
settings is named APx500 Config-SigPath GetSet Output Digital Unbalanced. Its context help
and configuration settings control are shown in Figure 74. Note the correspondence between the
LabVIEW controls in Figure 74 and the APx500 controls in Figure 73.

Cukpik Cunfiguratinn Digital Unbalanced

APx500 Config-SigPath GetSet Output Digital Unbalanced.vi

Maoke; Channels fixed at 2
SEt I:F:I_

APx500 Reference in APx500 Reference out Sample Rate Sample Rate Units
Signal Path - [Eoza | & Signal Path |4:3,|:||:||:||:|k :L:IIHZ

Cutput Configuration Digika. . Tﬂm‘*ﬂ"lﬂutput Configuration Digita... Bit Depth
errar in {no error) errar ook ¢ I—
B:I 24
|+ Enable Dither
[Cukput Mode Prafessional (F)

Will get or optionally set the cofiguration settings For the Digital Unbalanced Qutput
Conneckar Type,

Figure 74

There are similar VIs for configuring input configuration settings and output configuration
settings for all the possible instrument connector types. Note that the VIs for Digital Serial do not
provide all the settings, but allow you to select a Digital Serial settings configuration file where
all the settings can be stored. In addition, there is no VI for the None (External) output connector
type, because in this case there are no settings to set.

Figure 75 shows an example VI from the driver collection named APx500 Example - Configure
Digital Unbalanced Output. This example illustrates configuring the Digital Unbalanced output
connector settings from LabVIEW. It is similar in structure to the example shown in Figure 71.

| APx500 Example - Configure Digital Unbala - |EI|5|
File Edit Wiew Projeck Operate Tools Window Help
Zample
Ql@l ©|EI| 13pt System Font |v||;mv| ﬁv“ﬁvl@gﬁﬁ'g
B
Sigrial Path
]Signal Pathl APx500 Example to illustrate
configuring the Digital
Oukput Configuration Digital Unbalanced Unbalanced Qutput Connector
- ch I= Fixed Settings {accessed From the
Moke: Channels fixed at 2 Setkings. .. bukton in the Output
Sample Ruake Sample Rate Units Canfiguration bax af the Signal
A Path Setup in APl Each kime
|48.EIIZIDDk fJIHZ the value of one of the controls
Bit Depth in the cluster is changed, the VI
£y I— Sets the configuration settings in
ZJ 24 the APY application accordingly.
[+ Enable Dither IF an error is thrown, it displays
) the Simple Error Dialog, clears
[Dutput Made Professional (F) TR I e B S
configuration settings.
stop o
STOP
-
My Computer | 4 | 2P

Figure 75

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 54 of 64

Reference Levels

There are two sets of Vs in the driver collection for dealing with APx500 reference levels. The
first is the VI named APx500 Utility-Get Set Reference Levels. This V1 is similar in function to
the other configuration VIs. A cluster named Reference Levels is passed into and out of this V1.
The context help for the VI and the Reference Levels cluster are shown in Figure 76. Note the
similarity of the controls in the cluster to those on the References page (accessed from the
References... button near the bottom of the APx500 screen in the Reference Levels
measurement).

APR500 Utility-Get Set Reference Levels.vi eference Levels in;
Gek or set (get) dEra Lewel dBrA Unit dEra Offset (dE)
APH500 Reference in L — APx500 Reference out .‘—JI 1.000 I'\-'rms JBJID.IIIIIIIII
Signal Path & Measurement = EE‘F%E - b= Sigrial Path & Measurement dBrE Level 9BFE Unit dErE Offset (dB}
Reference Levels in ==Reference Levels out iy I\" iy ID 0
Errorin {no error) error ok 'jl 1000 rms ',J :

dBSPL1 Lewvel dBSPLL Unit dBSPL1 Cal Lev (dB
AP=300 Ukility bo @et or Set thereference levels, IF Set is False (default) it gets the values in the (dB)

£ y'

Reference Levels cluster. Otherwise it sets them, .—)l 10.000m |\-'rms \;)|94.DEIEI
dBSPLZ Level dBSPL2 Unit dESPLZ Cal Lev (dE)

Reference Levels cluster contains: i i
APx500 Utility to Set Reference Levels, Sets the APx Reference Levels to values in the Reference ")I 10.000m _ [Jums 5"94":":":'
Levels cluster, containing: dBrs Lewel dBra Unit

a
dEra Level and units 'jl 100-0m |ifrms

dEra Offset in dB

dBrE Lewel and units
dBrb Offset in dB
dBSPLI level and units
dBSPLL Calibrator Level
dBSPLZ level and units
dBSPLZ (Calibrator Lewvel
dBrG Level and units

Figure 76

To set a reference level in LabVIEW, the procedure would be (1) get the reference levels cluster
to determine the current settings, (2) use the Bundle by Name function to change the value of the
reference level you want to change, and (3) set the reference levels using this V1 to update
APx500.

There are two additional Vs in the driver collection related to reference levels. These Vs are for
accessing the auto-set generator level feature in APx500. The window in Figure 77 becomes
visible in APx when you click the Auto Gen Level... button in the Signal Generation box of the
Reference Levels measurement.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 55 of 64

Automatically Set Generator Leve 5[

— Signal Generation

b awirurm Lewvel:

— Signal Acquisition and Analysis
% Target THD+M
" Target Measured Level

% Set generator level for target THD +M

Target THO+M: 1.00 % ﬂ

" Set generatar level for minimum THD -+

% Measure channal with worst THD+H

" Measwre a specific channel

Measured Channel: Chl -

Set Generator Level | Cloze | Help |

Figure 77

The VI on the left side of Figure 78, called Reference Levels GetSet Auto Gen Level.vi is used to
get or set the auto-set generator level settings. The VI on the right side of Figure 78 is used to
initiate the auto-set generator level measurement. It is equivalent to pressing the Set Generator
Level button (at the bottom of the window shown in Figure 77.

APx500 Config-Reference Levels GetSet Auto Gen Level.vi APH500 - Auto Set Generator Level wi

APx500 Reference in

signal Path & Measurement =
Auko Gen Level Settings =

error in {no error)

APx500 Reference out

Signal Path & Measurement out
e 4B i3 Lewel & Units

error ouk

APx500 Reference in
APx500 Reference out Signal Path & Measurement =
y = Signal Path & Measurement aut errar in (no errar) ==
B ko Gen Level Setkings
error ouk

This %I will attempt to automatically sek the generator level in the Feference Levels

This %I gets or seks the parameters For the APxS00 measurement named "Automatically Measurement of the signal path specified by the Signal Path and Measurement
Set Generator Level", This special measurement for automatically setting the generator input. The Auto Set Generator Level settings can be configured with the AP<S00
lewel is accessed From the Reference Levels measurement of the specified Signal Path, Config-Reference Levels GetSet Auko Gen Level YI.

when you click the Auto Gen Level. ., button,

If the generator level can not be automatically set using the specified settings, this
IF Set is True, the YT bries ko sek the parameters as specified by the Auto Gen Level %I will reburn the errar generated by APx, IF the level is sucessfully sek, it will return
Settings control, then reads and returns the values that have actually been set, the dBrG Lewel and dBrG units in & bwo-element cluster,

I Set is False {default), it just gets the parameters from APx without changing them,

Figure 78

Note that the Auto Gen Level feature is a type of regulation measurement that iteratively tries to

find a generator level that produces the specified distortion. If it can not find a suitable generator
level, APx will generate an error that will be returned to LabVIEW. However, the error message

passed to LabVIEW in this case is not as easy to understand as the one generated by APx (Figure
78).

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 56 of 64

Unable to et generator level for the specified target distortion, Error 1172 occurred at Invoke Node in APA500 -
0 Auto Set Generator Level.¥i- =APx500 Example

- Reference Levels Auto Gen Level.vi

Possible reason{s):
Cloze |
v

7 LabWIEW: A MNET exception occurred.

Figure 79

Figure 80 shows the front panel of an example VI included in the driver collection that illustrates
working with auto-generator level VIs.

B APx500 Example - Reference Levels Auto Gen Levelvi Front Fanel — B

File Edit Wiew Project Operate Tools Window Help

Iﬂlﬁ i@ !|I 13pt System Farit vl ;Evl _.”‘g=v||_é+ﬂ£| @“"W
B

Reference Levels

o0 |4
0000 | 4

o |4
Ao
20000

Figure 80

Acquiring Raw Data from the Signal Analyzer Measurement

The measurement Vs discussed so far contain data equivalent to what is displayed in the
APx500 XY graphs and bar graphs. This is ideal for most applications. However, there may be
situations in which a user wants to access all of the measurement data. Figure 81 shows two VIs

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 57 of 64

that are included for this purpose. The VI on the left runs the Signal Analyzer measurement and
returns an array of LabVIEW waveform data containing all the acquired points. The VI on the
right is similar, except that it returns an array of FFT spectra containing all FFT points. These
VIs are useful if you want to perform FFT calculations, or conduct some analysis that is not
included in the APx500 application.

APx500 - Run Signal Analyzer Scope All Points.yi APH500 - Run Signal Analyzer FFT All Points.vi

APx500 Reference in
SignalPath (Signal Pathi) -
Msmt. Mame (Signal Analyzer)
errar in (o error)

—— APxE00 Reference out APx500 Reference in
. E=Scope Data SignalPath {Signal Path1) -
Pemgrrar ouk Msmk, Mame (Signal Analvzer) :

error in (no error) ==

_________ APx500 Reference out
E=FFT Spectrum Data

This %I runs the Signal Analvzer measurement for the specified Signal Path & Measurement and
returns the Scope waveform data for all enabled input channels. This VI uses the settings as
currently configured in the AP«S00 application. The Signal Analyzer measurement can be configured
using the configuration YIs.

This ¥I runs the Signal Analyzer measurement For the specified Signal Path & Measurement and
returns the FFT spectrum data For all enabled input channels, This YT uses the settings as
currently configured in the &Px500 application. The Signal Analyzer measurement can be
configured using the configuration YIs.

FFT Spectrumn Data returned is a cluster conkaining: FFT Spectrum Data returned is a cusker containing:

Frequency - 1-D array of &l frequency points in the FFT Frequency - 1-D array of all Frequency points in the FFT

Levels - 2-D array of levels (m x nj, Levels - 2-D array of levels (m x n),

where n = # input channels enabled where n = # input channsls enabled

and m =2 (_# points in the FFT) +128 and m = the # points in the FFT

Data Unit {string) Frequency Unit {string)

Lewvel Unit {string)
Mote: AP%S00 acquires 2 x { FFT length) + 128 samples to enable the zero crassing detection. The

extra 128 samples are returned in the waveforms, IF Signial Path and Msrk, Marme are urwired, the YT uses the default values,

If Signal Path and Msmt. Mame are unwired, the WI uses the default walues,

Figure 81

Controlling Input and Output Switchers

A set of four VIs to control switchers is included on the Switchers sub-palette (available from the
Signal Path sub-palette of the Configuration palette) as shown in Figure 82. These can be used to
get or set the input switcher configuration, get or set the output switcher configuration, open a
switcher configuration file or save a switcher configuration file. The context help for the Get/Set
Input Switcher VI is shown in Figure 83.

oIS witchers

e o Open Save
o [Swer _'| S _'|

Input Switcher COutput Switcher Open Swr File Save Swr File

Figure 82

AP®500 Config-SigPath GetSet Input Switcher Configuration.vi

Set |:F:|E
APx500 Reference in AFPx500 Reference out
Signal Path - [Eorer | b Signal Path out

Input Switcher Configuration Wlnput Switcher Configuration
error in (no error) error ouk

Will get ar optionally set the Input Swikcher configuration settings for the specified
Signal Path.

Moke: This VI uses array Input Switcher Settings ko store the input switcher channels
for each switcher address, The Swikcher Address (1-16) is not explicitly contained in
the Input Switcher Configuration Control, but it can be derived from the index of the
Input Switcher Settings array.

Figure 83

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 58 of 64

Using the WaveReader DLL

The WaveReader DLL provides functions that can be called from an external program, to enable
transfer of acquisition data from an APx analyzer to that program in near real time. The DLL
uses the APx500 Measurement Recorder measurement and its ability to save acquisition data to a
.wav file. Two VIs that provide this functionality in LabVIEW are shipped with the driver
(Figure 84 and Figure 85). These Vs are located with the DLL in the APx500 Examples

LabVIEW project within the WaveReaderSupport folder (see Figure 12).

APx500 5tart Measurement Recorder WaveReader.vi

APx500 Reference in WawveReader Reference
Signal Path & Measurement = +
numChsToRead Frror oy

errar in (no error)

This VT is used in conjunction with the APx500 Get Measurement Recorder WaveReader Data VI to
run the APx Measurement Recorder measurement in a different process, so that the calling VI can
read data from the .wav files recorded by APx as they are being written. Use this VI to initialize the
WaveReader process and to start the Measurement Recorder measurement, Once the
measurement is started, the Get WaveReader Data VI can be used to get data from the recorded
wav file,

Inputs:

APx500 Met Reference

Signal Path & Measurement cluster
Errarin cluster

Outputs:
WawveReader .Met Reference
Error out cluster

Mote: To use these VIs, the APxS00 software must have a Measurement Recorder measurement
with the specified name in the specified Signal Path. APx must also be properly configured to
record a .wav file from the Measurernent Recorder measurement.

Figure 84

Getting Started with the Audio Precision APx LabVIEW .NET Driver

Page 59 of 64

APx500 Get Measurement Recorder WaveReader Data.vi

WaveReader Reference AFE00 WaveReader Reference out
Timeout (ms) - A ﬁ'Wavefurm Data
Murnber of Samplesﬂuﬂ “ Has Samples?
error in (no error) error out

Use this VI after calling the APx500 Start Measurement Recorder WaveReader VI to read data from the
wav file(s) recorded by the APx500 Measurement Recorder measurement. This VI can be used to read
data from the .wav files during the time that APx is writing them. This feature allows measured
waveform data to be streamed to the calling VI as it is being acquired.

This V1 reads data for the specified Number of Channels and Mumber of Samples from the .wav files
recorded by APx. On the first call, the VI reads from the beginning of the file and it keeps track of the
file rarker position so that sequential samples are read on each subsequent call.

This YT waits until the specfied Mumber of Samples is acquired, or the End of File is reached. It returns
a waveform array with one waveform for each Channel, Each waveform returned contains the
specified Mumber of Samples, or the number of samples remaining in the file if this number is less
than the number of samples specified. When all the data has been read, Has 5amples? is returned as
False and Waveform Data will be an empty array.

To use this VI to get back all the acquired data, insert it into a While Loop which terminates when Has
Samples? is False,

Figure 85

Figure 86 shows an example VI from the Driver Examples folder that illustrates using the

WaveReader DLL. This example, with the accompanying APx project file

(WaveReaderExample.approjx), illustrates acquiring two channels of data at a 48 kHz sample
rate from APx500 with the VI’s waveform and FFT graphs being updated every 0.1 seconds. The

example uses a chirp signal that sweeps from 20 Hz to 20 kHz in 3 seconds.

{H apsoo Example - WaveReader.vi

o] & =

File Edit View Project Operate Tools Window Help

B [&][@[n]

"

W ave
Beadar

For instructions on using this VI view the VI's Documentation property or show context help and mouse over the W's icon.

signalPath Waveform Graph

Signal Pathl
fi
|
|

ft
A |'1|
SANA

measurement

Measurement Recorder
numChs

il

=

vy
numSamples

J,. 4800 Time

B star

i
|
AR R AR

foh |ﬁ| f |.||
fi

||||||'|||I|||||'||
IRV R B

T T T Y e [Tt

Vouoy oy

1 APx Visible?
| FFT on? . Al ik
1k 10k 20k
Frequency (Hz) L
Figure 86

Getting Started with the Audio Precision APx LabVIEW .NET Driver

Page 60 of 64

After loading the project file, be sure to change the Save to File directory in Measurement
Recorder to a valid location on your PC. The Wavereader DLL reads a maximum of 64k samples
but can be called in a loop, as shown in the example, to read any length. To make sure that
memory is released, the LabVIEW .NET Close Reference VI should be used to close the
Wavereader reference after use.

Directly Accessing .NET Methods and Properties

There is additional advanced functionality in APx500 that is not built into the provided drivers.
However, you can access this functionality by modifying the existing VIs or by constructing
your own Vs to access any method or property that exists in the APx500 .NET API. To see all
the methods and properties available, open the API Browser from the APx500 folder in the
Windows Start menu.

Example: Adding a Method

The following example will step through constructing a VI to invoke a method. This VI will
independently set the generator level for each channel in the Level and Gain measurement. In the
APXx500 Ul, this functionality is provided by clicking the Advanced Settings button in the
Settings Panel of the Level and Gain measurement. In general, the settings and options in the
Advanced Settings dialog of most measurements are not already provided in the LabVIEW
driver.

DynamicRange
BeEng Visible Iterns 3 FftSpectrumSignalMonitor
— Frequency
FrequencyResponse
Description and Tip... HdmiAudiolnfoFramesMonitor
Breakpoint Height
Imd

ImdFrequencySweep

APx500 Palette
MET Palette

Control InputSampleRate

w B N

Replace

-

InterchannelPhase
IsDemoMode

SubVI Node Setup... Property for AudicPrecision APLAPxS00 Class » IsProjectModified

Methed for AudioPrecision APLAP:S00 Class » LastException
Left

Indicator

Enable Database Access
Call Setup...

Find All Instances MaxOutput *
Open Front Panel MaxOQutputBurst
Figure 87

a) Place an APx Open VI. Then, right click on the APx500 Reference Out terminal of the
VI, select Create > Property for AudioPrecision.API.APx500 Class, and choose
LevelAndGain. Note that you can also perform this operation on the APx500 Reference
Out terminal of any existing APx LabVIEW .NET Driver VI.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 61 of 64

Visible Items 4
Help For Property Node

Description and Tip...

Breakpoint »
Select Property »
Add Element
WMET Palette »
Control
Replace »
A Indicator

Property for AudicPrecision.APLILevelAndGainMeasurement Class » AnaloglnputRanges
. o Methed for AudioPrecision APLILevelAndGainMeasurement Class » Gain
MName Format »

Ignore Erors ncide Node TR ——
Graphs

Properties IsValid
Level

Figure 88

b) From the LevelAndGain property, right click and create a new Generator property for the
ILevel AndGainMeasurement class. Wire it to the Level AndGain property.

< APG00 §
LevelAndGain¥

ﬁ =2 [LevelAndGainMeasurement E‘

‘ Generator ’}_| % = ILevelAndGainGenerator
| Analoglevels

Visible rermns 4
Help For Property Mode

Description and Tip...

Breakpoint »

Select Property »

Add Element

{NET Palette » 3
Comtat

Control
Replace »
[Indicator

- - Property for AudioPrecision APLIGeneratorl
GetOffsetText{OutputChannellndex ch) Method for AudicPrecision.APLIGeneratorLs
GetOffsetText{OutputChannellndex ch, String unit)
GetOffsetValue(OutputChannellndex ch)
GetOffsetValue(OutputChannellndex ch, String unit)
GetText{QutputChannellndex ch)
GetText{OutputChannellndex ch, String unit)
GetValue(OutputChannellndex ch)
GetValue(OutputChannellndex ch, String unit)

Figure 89

c) Connect the new Generator property, and then in a similar way add an AnalogLevels
property to the ILevelAndGainGenerator class. From the AnalogLevels property, create a
SetValue method and connect it.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 62 of 64

reference out

B =2 APS00 B @
| evelindGain—E 3

AcEng
— i——{% = ILevelAndGainMeasurement &
| Generator " % =t ILevelAndGainGenerator E|========== " wt IGeneratorLevels §
l Analoglevels Y SetValue
, ch ;

0.75

error out

,E;"-f IGeneratorLevels ,E;
SetValue
' ch

0.5

Figure 90

d) Add an additional SetValue method for channel 2 and complete the VI as shown above.

Example: Adding a Property
a) Place an APx Open VI. Then, right click on the APx500 Reference Out terminal of the
VI, select Create > Property for AudioPrecision.API.APx500 Class, and choose
LevelAndGain. Note that you can also perform this operation on the APx500 Reference
Out terminal of any existing APx LabVIEW .NET Driver VI.

b) From the LevelAndGain property, right click and create a new Generator property for the
ILevel AndGainMeasurement class. Wire it to the Level AndGain property.

c) From the Generator property, right click and create a new On property for the
ILevel AndGainMeasurement class. Wire it to the Level AndGain property. Expand the
property node and add an AnalogSineMode property.

d) Add indicators for the On and AnalogSineMode properties.

error in (no error) p 5 = APx300 5
[=nfaa LE""EI'E'nC|Ge'n'fL__ B =2 |LevelAndGainMeasurement &
) Generator D—E— & : & error out
n == ILevelAndGainGenerator 5 :l
On [

AnalogSineMode "

Figure 91

e) Many properties can set to either read or write. To change a property from write to read,
right-click on the property and choose “Change To Write”.

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 63 of 64

error in (no error) !:h! = APx300 g

@ el 11 25 LE""Eli‘mlGEin'ft & = [LevelAndGainMeasurement .
Errar ou
Generator '-_1; § =X ILevelAndGainGenerator EL,,,,,,,,,, |
TS” Change All To Write
L AnaO9M Visible Items »
Help For Property Node ode
Description and Tip...
Breakpoint »
Select Property »
Change To Write
AdAd Flarnant
Figure 92
f) After changing the property to write, wire a control or a constant to it.
i Bz APx500 B
error in (no error) I A oo n
[Ctlnluazi=d LE""EI":"“EIG&'”'TL B ot |LevelAndGainMeasurement B
= ————— .:]; : error out
Generator 3 =% lLevelAndGainGenerator Rl lyees]

On

AnalogSineMode ¥
AnalogSineMode

You can see additional examples by simply opening up any VI in the APx LabVIEW .NET
Driver and opening its sub VIs until you see the .NET methods and properties. In this way, you
can also modify any of the provided VIs to access to additional functionality. However, if you
make modifications, be sure to save the VI with a new name so that your changes don’t get
overwritten the next time you upgrade the driver.

Figure 93

Conclusion

We hope that the APx LabVIEW .NET Driver will be a good resource for LabVIEW developers
wanting to control and interact with an APx audio analyzer. If you need additional information,
check the downloads and knowledge base sections at www.ap.com or call our Technical Support
department for assistance.

Copyright © 2016 Audio Precision
XV10913170400

Getting Started with the Audio Precision APx LabVIEW .NET Driver Page 64 of 64

http://www.ap.com/

